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Introduction
One of the technologies meeting the IMT-2000 requirements for a third genera-
tion (3G) global wireless communications system is cdma2000®, also known as 
IS-20001. The Third-Generation Partnership Project 2 (3GPP2) wrote the specifi-
cation for this wideband code division multiple access (CDMA) system as a deriva-
tive of the IS-95-B CDMA system, also known as cdmaOne. The 3GPP2 organiza-
tional partners are the Japanese Association of Radio Industries and Businesses 
(ARIB), Telecommunication Technology Committee (TTC), Telecommunications 
Industries Association (TIA), and Korean Telecommunications Technology Associ-
ation (TTA).

As the IS-2000 standards are finalized, the first mobile station designs are being 
completed and tested. This application note describes mobile station (MS) design 
and measurement issues at the physical layer (layer 1) that may differ between 
cdma2000  and cdmaOne. Although it focuses on the last stages of MS develop-
ment, it is also useful for engineers working in the early stages of manufacturing. 
The application note also provides a list of Keysight Technologies, Inc. cdma2000  
solutions for these topics. 

This application note assumes that you are familiar with cdmaOne measure- 
ments and technology basics. cdmaOne is used as a reference throughout this 
application note. The main differences between cdmaOne and cdma2000  sys-
tems and the corresponding design and measurement implications are highlight-
ed. For more information on cdmaOne measurements see [1].

This application note can be downloaded from the Keysight Technologies Web site 
and printed locally from: http://www.keysight.com/find/cdma2000 located under 
"Key Library Information".

1.  IS-2000 is the Telecommunications Industries Association’s (TIA’s) standard for 3G 
technology that is an evolution of cdmaOne technology. cdma2000, which is often used 
interchangeably with IS-2000, is also used to refer to the access format and system.

http://www.keysight.com/find/cdma2000
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1 Basic Concepts of cdma2000  

The main advantages that cdma2000 offers over other IMT-2000 proposals are back-
ward compatibility with cdmaOne systems and a smooth migration from second-gen-
eration (2G) cdmaOne systems to 3G. Figure 1 shows the potential evolution path from 
cdmaOne to cdma2000 systems.

Figure 1. Evolution from cdmaOne to cdma2000.

1.1 Spreading rate
Spreading rate (SR) defines the final spread chip rate in terms of 1.2288 Mcps. The two 
spreading rates are SR1 and SR3.

SR1: An SR1 signal has a chip rate of 1.2288 Mcps and occupies the same bandwidth 
as cdmaOne signals. The SR1 system doubles the system capacity, therefore, it can be 
considered an improved cdmaOne system. The main differences from cdmaOne are

–– fast power control and quadrature phase shift keying (QPSK) modulation rather than 
dual binary phase shift keying (BPSK) in the forward link

–– pilot signal, to allow coherent demodulation, and hybrid phase shift  keying (HPSK) 
spreading in the reverse link

SR3: An SR3 cdma2000 signal has a rate of 3.6864 Mcps (3 x 1.2288 Mcps) and occu-
pies three times the bandwidth of cdmaOne. Originally, the SR3 system appeared to be 
viable. Upon further investigation the SR3 cdma2000 system was determined to not be 
viable and is no longer receiving any commercial attention at this time. Therefore, we 
will not be covering SR3 in this application note.
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1.2 Radio configuration
Radio configuration (RC) defines the physical channel configuration based upon a 
specific channel data rate. Each RC specifies a set of data rates based on either 9.6 or 
14.4 kbps. These are the two existing data rates supported for cdmaOne. Each RC also 
specifies the spreading rate (either SR1 or SR3) and the physical coding. Currently there 
are nine radio configurations defined in the cdma2000 system for the forward link and 
six for the reverse link. Examples are: 

–– RC1 is the backwards compatible mode of cdmaOne for 9600-bps voice traffic. It 
includes 9.6, 4.8, 2.4, and 1.2 kbps data rates and operates at SR1. It does not use 
any of the new cdma2000 coding improvements. 

–– RC3 is a cdma2000-specific configuration based on 9.6 kbps that also supports 4.8, 
2.7, and 1.5 kbps for voice, while supporting data at 19.2, 38.4, 76.8, and 153.6 kbps 
and operates at SR1.

Each base transceiver station (BTS) or MS must be capable of transmitting using differ-
ent RCs at the same SR. Refer to [2] for detailed information on the different RCs.

1.3 Forward link air interface
The forward link air interface for a cdma2000 SR1 channel is very similar to that of 
cdmaOne. In order to preserve compatibility, cdma2000 uses the same structure as 
cdmaOne for the forward pilot (F-Pilot), forward sync (F-Sync), and forward paging 
(F-Paging) channels. 

In cdma2000, each user is assigned a forward traffic (F-Traffic) channel, which  
consists of

–– zero to one forward fundamental channel (F-FCH)

–– zero to seven forward supplemental code channels (F-SCCHs) for RC1 and RC2 

–– zero to two forward supplemental channels (F-SCHs) for RC3 to RC9

–– zero to one forward dedicated control channels (F-DCCHs)

The F-FCHs are used for voice and the F-FCCHs and F-SCHs are used for data. The BTS 
may also send zero or one F-DCCHs. An F-DCCH is associated with traffic channels 
(either FCH, SCH, or SCCH) and may carry signaling data and power control data.

One of the main differences between cdmaOne and cdma2000 is that the latter uses 
true quadrature phase shift keying (QPSK) modulation (as opposed to dual-BPSK) for all 
traffic channels from RC3 to RC9. As an example, Figure 2 shows the forward link struc-
ture for an RC4 F-FCH. The coding is identical to cdmaOne up through the long code 
scrambling of the voice data. The F-FCH is optionally punctured with the reverse link 
power control data bits. The data is then converted from a serial bit stream into a two-
bit wide parallel data stream to produce true QPSK modulation. This reduces the data 
rate of each stream by a factor of two. Each branch is spread with a 128 Walsh code to 
generate a spreading rate of 1.2288 Mcps. In this case, the processing gain is doubled 
for each channel relative to cdmaOne. Each channel is transmitted at one-half the power 
used before, but there are now two of them for no apparent gain. The actual processing 
gain for each channel depends on its data rate and RC. 

The outputs of the I and Q Walsh spreaders are then complex multiplied against the 
same I and Q channel short codes used in cdmaOne. Complex scrambling is used in the 
forward link instead of regular scrambling because it is a more robust scheme against 
interference.
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Figure 2. Coding and air interface for a cdma2000 RC4 F-FCH.

1.4 Reverse link air interface — HPSK 
The cdma2000 reverse link is very different from cdmaOne. The MS can transmit more 
than one code channel to accommodate the high data rates. The minimum configuration 
consists of a reverse pilot (R-Pilot) channel to allow the BTS to perform synchronous 
detection and a reverse fundamental channel (R-FCH) for voice. Additional channels, 
such as the reverse supplemental channels (R-SCHs) and the reverse dedicated control 
channel (R-DCCH) can be used to send data or signaling information, respectively.

The different channels are assigned to either the I or Q path. For example, for RC3 to 
RC6, the R-Pilot is assigned to I and R-FCH is assigned to Q (see Figure 3). 
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Figure 3. An example of channel summing and HPSK spreading in cdma2000 reverse link (SR1). 

Channels can be at different rates and different power levels. Complex scrambling 
facilitates this by continuously phase rotating the constellation and thus distributing the 
power evenly between the axes. 

Without scrambling, unequal channel powers would result in a rectangular four-quadra-
ture amplitude modulation (QAM) constellation (assuming that only R-Pilot and R-FCH 
are active). With complex scrambling, the constellation for two channels generally has 
eight points distributed around a circle, with the angular distribution determined by the 
relative powers of the two channels. For example, an amplitude difference of 6 dB be-
tween the two channels results in the constellation shown in Figure 4, which is close to 
an 8-PSK (8-phase shift keying) constellation (an amplitude difference of 7.65 dB would 
result in a perfect 8-PSK constellation). If the amplitudes for the two channels are equal, 
then pairs of constellation points merge to give a QPSK-like constellation.
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Figure 4. A reverse link cdma2000 SR1 signal with an R-Pilot and an R-FCH. The amplitude of the R-FCH is 6 
dB lower than that of the R-Pilot.

Basic complex scrambling applies a phase rotation of 0, ±π/2, or π radians to each chip. 
HPSK takes this idea a stage further and defines the complex scrambling so that for 
every second chip, the phase rotation is restricted to ±π/2. This constraint on the phase 
transitions entering the baseband pulse shaping filter reduces the peak-to-average ratio 
of the signal (about 1 to 1.5 dB) compared to regular complex scrambling (or regular 
QPSK). The HPSK technique continues to be advantageous even when the signal has 
more than two channels. For more information on HPSK see [3].

1.5 Forward link power control
A key improvement in cdma2000 is forward link power control. The MS sends power 
control data back to the BTS by time multiplexing it with the R-Pilot channel. Like the 
existing reverse link closed loop power control of cdmaOne, the cdma2000 forward 
link closed loop power control sends 800 power control bits each second. These bits 
indicate whether the BTS should raise or lower its power in 1 dB, 0.5 dB, or 0.25 dB. The 
finer steps allow tighter power control for low mobility or stationary phones. Tighter 
control (less power ripple) lowers the average power and thus raises the capacity of the 
system.

1.6 Differences between cdma2000 and W-CDMA
The Third-Generation Partnership Project (3GPP) W-CDMA is the other main wideband 
CDMA technology competing for the 3G cellular market. There has been much discus-
sion about the need to harmonize W-CDMA and cdma2000 in an attempt to facilitate 
global use of 3G phones. However, even though both systems are based on a similar 
CDMA technology, they are significantly different. The main differences are

–– the spreading rate (3.84 Mcps for W-CDMA versus 1.2288 Mcps for cdma2000 
SR1)

–– the synchronization and BTS identification methodology (W-CDMA does not use 
global positioning system (GPRS))

For information on W-CDMA user equipment (UE)1 design and test issues, please refer 
to [4].

1.  The W-CDMA specifications use the term UE to refer to mobile phones, wireless comput-
ing devices, or other devices that provide wireless access to the W-CDMA system.

I/Q measured polar vector
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2 Design and Measurement Issues

Figure 5. R&D and manufacturing phases of an MS.

Figure 5 shows a generic diagram for the R&D and manufacturing phases of a MS. This 
chapter focuses on the development phase of the MS, highlighted in black. However, 
it contains general information useful to engineers involved in any area of the MS life 
cycle.

This chapter describes design and measurement issues that you may encounter when 
designing and testing a cdma2000 MS, in contrast to cdmaOne. Although the exact 
cdma2000 measurement specifications are not finalized, in general we can assume that, 
when possible, the basic measurement methodology will be similar to cdmaOne. There-
fore, in this section cdmaOne measurements are used as a reference. For information 
on cdmaOne measurements refer to [1].

Refer to the appendix for a list of Keysight solutions available for MS design and test.

2.1 Maximizing battery life
Long battery life is a key competitive advantage for the mobile phone. cdmaOne uses 
offset quadrature phase shift keying (OQPSK) as the modulation format for the reverse 
link. OQPSK minimizes the peak-to-average power ratio by avoiding signal envelope 
transitions through zero. Peak-to-average power ratio is the ratio of the peak envelope 
power to the average envelope power of a signal. If the peak-to-average power ratio 
is small, the headroom required in the amplifier to prevent compression of the signal 
and interference with the adjacent frequency channels is small. Thus, the amplifier can 
operate more efficiently.

In cdma2000 the handset can transmit multiple channels to accommodate the high data 
rates. Modulation schemes such as OQPSK or Gaussian minimum shift keying (GMSK) 
do not prevent zero-crossings for multiple channels and are no longer suitable. Instead, 
QPSK is used in combination with HPSK to minimize the peak-to-average power ratio. 
(For more information on HPSK see [3].) With this technique, the peak-to-average power 
ratio for the basic configuration (an R-Pilot channel and an R-FCH) is equal to or larger 
than 4 dB during 0.1 percent of the time (see Figure 6). Even though HPSK reduces the 
peak-to-average power ratio, it still increases as code channels are activated for higher 
data rates because the amplitude vectors of each code channel add to each other. 

A severe case occurs if two supplemental channels at high data rates are required. In 
this case, the benefits of HPSK may be lost (see Section 2.2.3). This is rarely expected to 
happen since the forward link will carry most of the high data rate traffic.
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The amplifier must be capable of handling the different peak-to-average power ratios 
the signal exhibits for the different channel configurations, while maintaining a good 
adjacent channel power (ACP) performance. 

From the measurement perspective, the statistics of the signal may impact the result 
of the measurement, particularly in the case of adjacent channel power ratio (ACPR). 
Therefore, it is important to choose the signal’s channel configuration carefully. You 
need to cover the real-life worst cases, such as those with the most stressful signal 
configurations or highest peak-to-average power ratios. To do that, you need a way to 
define the statistics of cdma2000 reverse link signals. The complementary cumulative 
distribution function (CCDF) does that for you.

2.1.1 CCDF
The CCDF fully characterizes the power statistics of the signal [5]. It provides the distri-
bution of particular peak-to-average power ratios versus probability.
 
Figure 6 compares the CCDF curves for a signal with R-Pilot and R-FCH, and a signal 
with R-Pilot, R-FCH, R-SCH1 at 153.6 kbps, and R-SCH2 at 153.6 kbps. For a proba-
bility of 0.1 percent, the signal with two supplemental channels has a peak-to-average 
power ratio 2 dB higher than the signal with only an R-Pilot and an R-FCH. As men-
tioned earlier, adding code channels, in general, increases the peak-to-average power 
ratio of the signal [5].

Figure 6. CCDF curves for two cdma2000 SR1 reverse link signals with different channel configurations.

So, how do the statistics of cdmaOne compare to the statistics of cdma2000? Figure 7 
shows the CCDF for a cdmaOne reverse link signal and the CCDF for a cdma2000 signal 
with an R-Pilot and an R-FCH. At 0.1 percent the peak-to-average power ratio of the 
cdma2000 SR1 signal is 0.5 dB lower than the cdmaOne signal.

Peak-to-average power ratio values for cdma2000 SR1
(R-Pilot + R-FCH + R-SCH1 + R-SCH2)

cdma2000 SR1
(R-Pilot + R-FCH + R-SCH1 + R-SCH2)

cdma2000 SR1
(R-Pilot + R-FCH)

Delta marker: 2.02 dB
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Figure 7. CCDF comparison between cdmaOne and cdma2000 reverse link signals.

CCDF curves can help you in several situations:

–– Determining the headroom required when designing a component. You can do this 
by correlating the CCDF curve of the signal with the amplifier gain plots [5].

–– Confirming the power statistics of a given signal or stimulus. CCDF curves allow 
you to verify if the stimulus signal provided by another design team is adequate. For 
example, RF designers can use CCDF curves to verify t.hat the signal provided by 
the digital signal processing (DSP) section is realistic.

–– Confirming the component design is adequate, or troubleshooting your subsystem 
or system design. You can make CCDF measurements at several points of the sys-
tem design. For example, if the ACPR of the transmitter is too high, you can make 
CCDF measurements at the input and output of the power amplifier. If the amplifier 
design is correct, the curves will coincide. If the amplifier compresses the signal, the 
peak-to-average power ratio of the signal will be lower at the output of the  
amplifier.

2.1.2 ACPR
The ACPR is usually defined as the ratio of the average power in the 
adjacent frequency channel (or at a specified frequency offset) to the average power 
in the transmitted frequency channel. The ACPR measurement is not part of the IS-95 
standard, however, individual network equipment manufacturers typically specify ACPR 
as a figure of merit for component testing [1]. 

As mentioned earlier, when testing ACPR it is important to take into account the power 
statistics of the signal. A signal with a higher peak-to-average ratio may cause more in-
terference in the adjacent channel. Thus, ACPR measurements can provide different re-
sults depending on the signal configuration. The safest approach is to select at least one 
high-stress cdma2000 stimulus signal and test with various combinations of channels. 

The appropriate ACPR measurement parameters for cdma2000 depend on the SR. For 
SR1, you can use the cdmaOne parameters since cdmaOne and cdma2000 both use the 
same chip rate and filtering. Figure 8 shows the ACPR measurement for a cdma2000 
SR1 reverse link signal.

cdmaOne reverse
link signal (OQPSK)

cdma2000 SR1
reverse link signal
(R-Pilot + R-FCH)

Delta marker: -0.54 dB
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Figure 8. ACPR measurement for a cdma2000 SR1 reverse link signal.

2.2 Measuring modulation accuracy
Measuring modulation accuracy for cdma2000 MS is more complex than for cdmaOne 
MS. Since the cdma2000 MS can transmit several channels, think of it as a miniature 
BTS. It requires the same kind of tests (code domain analysis, etc.) you would perform 
on any CDMA BTS.

There are many measurements available to analyze the modulation accuracy of a 
cdma2000 MS transmitter: rho (pilot-only), QPSK error vector magnitude (EVM), com-
posite rho and EVM, code domain power, symbol EVM per code channel, etc. Apart from 
their basic algorithm, these measurements differ mainly on three aspects:

–– whether you can use them to analyze a signal with a single (QPSK EVM) or multiple 
(composite rho, code domain power, symbol EVM) code channels 

–– if you can use them to analyze multi-channel signals, whether they provide infor-
mation about each channel (code domain power, symbol EVM) or about the overall 
signal with no differentiation between channels (composite rho)

–– how (what degree of demodulation) and at what level (chip, symbol) the reference is 
computed

The best measurement to use depends on the design stage and the test purpose. In 
general, these measurements can complement each other by providing additional pieces 
of information. The following sections intend to clarify what information these measure-
ments provide and when to apply them.

1st offset

2nd offset
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2.2.1 QPSK EVM
In digital communication systems, signal impairment can be objectively assessed by 
looking at the constellation and taking the displacement of each measured dot from the 
reference position as an error phasor (or vector), as shown in Figure 9. 

Figure 9. Error vector and related parameters.

The reference position is determined from a reference signal that is synthesized by 
demodulating the received signal to symbols and then remodulating these symbols 
"perfectly". For example, Figure 10 shows how the ideal reference is calculated for a 
QPSK signal. 

Figure 10. Process to calculate EVM for a QPSK signal.

The root mean square (RMS) of the error vectors is computed and expressed as a per-
centage of the overall signal magnitude. This is the error vector magnitude (EVM). EVM 
is a common modulation quality metric widely used in digital communication systems. 
(See [6] for more information on how to use EVM as a troubleshooting tool.)

For a regular QAM or a phase shift keying (PSK) signal the ideal symbol points always 
map onto a few specific locations in the I/Q plane. The cdma2000 reverse link signal can 
consist of multiple channels that are I/Q multiplexed. This means the one-bit symbols 
for each channel are BPSK encoded1 for either the I or the Q path. Several channels can 
be added to the I and/or the Q paths. The resulting I and Q signals are then spread and 
HPSK scrambled (see Figure 3). The complex-valued chip sequence is then filtered and 
the result is applied to the QPSK modulator.2 The cdma2000 MS transmitter in Figure 11 
illustrates this process. 
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The resulting constellation depends on the physical channel configuration. The con-
stellation typically does not look like QPSK or any other known constellation. Except for 
some very specific channel configurations, for example, a signal with a single R-Pilot (or 
a single R-FCH) does map onto a QPSK constellation. A signal with both a R-Pilot and 
a R-FCH at the same amplitude level maps onto a 45°-rotated QPSK constellation [3]. 
Since the receiver does not care about the absolute phase rotation, it effectively sees a 
QPSK constellation.

You can use a regular QPSK EVM measurement to evaluate the modulation quality of the 
transmitter for a single R-Pilot, a single R-FCH, or a signal with both at the same ampli-
tude level. More complex signals cannot be analyzed with this measurement. 

The signal analyzer may use either of the following methodologies to make a QPSK EVM 
measurement:

1. �Measure QPSK EVM on the received signal. Filter the recovered I/Q signal with the 
equalizer and complementary receiver filters and compare it with a reference signal 
calculated by filtering the demodulated signal with the transmitter, equalizer, and 
receiver filters (Figure 11a). 

2. �Measure QPSK EVM on the transmitted signal. Compare the I/Q recovered signal 
directly with a reference signal calculated by filtering the ideal chips with the trans-
mitter filter (Figure 11b). 

Both methods yield similar EVM results and you can use either of them to make valid 
modulation quality measurements of the MS transmitter; however, the resulting con-
stellation looks different. The first method results in four discrete constellation points. 
The second method results in a fuzzy constellation, as shown in Figure 12a. The con-
stellations for both methods are correct. The reason for the difference is that, for the 
first method, the constellation displays what the receiver sees after filtering, while the 
second method displays the constellation of the transmitted signal before applying any 
receiver filtering.

Figure 11. Process to calculate QPSK EVM for a cdma2000 reverse link signal.
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In any case, QPSK EVM does not descramble and despread the signal into symbols and 
back into chips to calculate the appropriate reference. Therefore, it can detect baseband 
filtering, modulation, and the intermediate frequency (IF) and RF impairments, but does 
not detect spreading or scrambling errors. In addition, QPSK EVM cannot evaluate the 
modulation quality of a multi-channel signal.

If it is impossible to despread or descramble the signal, the QPSK EVM measurement 
may be the only choice. In this sense, the QPSK EVM measurement can be useful to RF 
designers or system integrators to evaluate the modulation quality of the analog section 
of the transmitter when the spreading or HPSK scrambling algorithms are not available 
or do not work properly. For example, Figure 12 shows a QPSK EVM measurement for a 
single R-Pilot for a transmitter with and without an I/Q gain problem.

Figure 12. QPSK EVM on a cdma2000 reverse link signal with a single R-Pilot channel, (a) without any impair-
ments, and (b) with an I/Q gain impairment.

You can use the vector diagram, error vector versus time or frequency, magnitude error 
and phase error versus time to troubleshoot the impairment. For example, most I/Q im-
pairments (such as the I/Q gain error in Figure 12b) can be easily recognized by looking 
at the vector diagram, while in-channel spurious can be detected by analyzing the error 
vector spectrum [6]. 

2.2.2 Composite rho
In cdma2000, as in cdmaOne, the specified measurement for modulation accuracy is 
rho. Rho is the ratio of the correlated power to the total power. The correlated power is 
computed by removing frequency, phase, and time offsets and performing a cross-cor-
relation between the corrected signal and an ideal reference.

In cdmaOne, the rho measurement is performed on the reverse link signal that consists 
of a single channel. In cdma2000, the rho measurement is defined for a signal with a 
R-Pilot only.

In practice, you can perform a rho measurement on any cdma2000 reverse link signal, 
regardless of the channel configuration. For this reason, the measurement is usually 
called composite rho. Composite rho allows you to verify the overall modulation accura-
cy for a transmitter, regardless of the channel configuration, as long as a R-Pilot is pres-
ent. The measurement algorithm involves descrambling and despreading the measured 
signal to calculate the reference signal, as shown in Figure 13. 

Constellation distorted by 
I/Q gain imbalance

(a) (b)

15 | Keysight | Designing and Testing cdma2000 Mobile Stations - Application Note



Figure 13. Process to calculate composite rho and composite EVM for a cdma2000 reverse link signal. 

A composite rho measurement accounts for all spreading and scrambling problems 
in the active channels and for all baseband, IF, and RF impairments in the transmitter 
chain. However, unless combined with a constellation diagram and other modulation 
accuracy measurements, rho (or composite rho) does not help you identify the cause of 
the error. Figures 14a and 14b show composite rho combined with one of these mea-
surements (composite EVM) and the constellation for a signal with an R-Pilot and an 
R-FCH and a signal with an R-Pilot, R-FCH, and one R-SCH, respectively. 

Figure 14. Composite rho measurement for (a) a cdma2000 SR1 reverse link signal with an R-Pilot and an 
R-FCH, and (b) a cdma2000 SR1 signal with an R-Pilot, an R-FCH and one R-SCH (the R-FCH is 3 dB lower 
than the other two channels).

Like QPSK EVM, composite EVM calculates the error vector difference between the 
measured and the ideal signal. The difference is that composite EVM uses the same ref-
erence as composite rho — that is, it descrambles and despreads the measured signal 
to calculate the reference (Figure 13).

By performing a composite rho or composite EVM test, you also obtain a measure of the 
frequency accuracy (see Figure 14), required in cdmaOne and in the IS-2000 standard.
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Here are some situations in which you should use composite rho (and composite error 
vector measurements) instead of a QPSK EVM measurement:

–– To evaluate the quality of the transmitter for a multi-channel signal. This is particu-
larly important for RF designers who need to test the  RF section (or components) of 
the transmitter using realistic signals  with correct statistics. As mentioned earlier, 
in general, the peak-to- average power ratio of the signal increases as the num-
ber of channels  increases. By measuring modulation quality on a multi-channel 
signal,  you can analyze the performance of the RF design for cdma2000  reverse 
link signals with different levels of stress (different CCDFs). Evaluating the modula-
tion quality of multi-channel signals is also important for the baseband designers 
to analyze the performance of multi-board baseband designs. For example, a small 
timing error in the clock synchronization between channels on different boards can 
be detected as a decrease in modulation quality. 

–– To detect spreading or scrambling errors. Depending on the degree of the error, 
the analyzer may show an intermittent unlock condition or may not be able to lock 
at all when trying to perform a composite rho measurement. These conditions are 
mainly of interest to system integrators to determine errors in the spreading and 
scrambling. Should this problem occur, you can use the QPSK EVM measurement 
to confirm the rest of the transmitter is working as expected. If the scrambling or 
spreading error does not cause an unlock measurement condition, you can use the 
error vector versus time display to find the problematic chip.

–– To detect certain problems between the baseband and RF sections. Again, these 
cases are mainly of interest to system integrators. You may be able to use the QPSK 
EVM measurement to detect some of these problems. For example, local oscillator 
(LO) instability caused by interference from digital signals can be detected with 
QPSK EVM. However, the QPSK EVM measurement will not detect problems that 
require synchronization with the signal. For example, I/Q swapped errors will look 
perfectly normal if a QPSK EVM measurement is used. On the other hand, it will 
cause an unlock condition when performing a composite rho measurement.

–– To analyze errors that cause high interference in the signal. If the interference is 
too high, the QPSK EVM measurement may not be able to recover the true ideal 
reference. In this case, the QPSK EVM and its related displays are not accurate. 
Since the composite rho measurement descrambles and despreads the signal, it 
takes advantage of the signal’s processing gain. This allows the analyzer to recover 
the true reference even when the signal is well beyond the interference level that 
will cause multiple chip errors. Therefore, composite rho and composite EVM are 
true indicators of modulation fidelity even when the signal under test is buried by 
interference. In this sense, these measurements may be particularly useful in hostile 
field environments with high levels of interference. System integrators can use 
the composite EVM measurement to analyze the quality of the MS at the system 
level. By applying external interference to the signal transmitted by the MS you can 
evaluate how bad the EVM can get before the signal analyzer cannot recover the 
signal. This allows you to verify what the minimum modulation accuracy for the MS 
transmitter should be in order for the BTS to demodulate the signal in realistic field 
environments. The processing gain benefits of composite rho (or EVM) can also be 
useful to RF designers and system integrators for occasional bad cases of interfer-
ence. For example, Figure 15a shows the phase error versus time for a QPSK EVM 
measurement and Figure 15b shows the phase error versus time for a composite rho 
(or EVM) measurement for a pilot-only signal with a very high LO instability. In this 
case, the analyzer can demodulate the signal and calculate the reference accurate-
ly. The phase error display in Figure 15b will allow you to analyze the interference. 
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Figure 15. cdma2000 R-Pilot signal with very high LO instability. (a) Vector diagram and phase error versus time 
for QPSK EVM. (b) Vector diagram and phase error versus time for composite EVM (provided with composite rho 
measurement).

Composite rho is useful throughout the development, performance verification, manu-
facturing, and installation phases of the MS life cycle as a figure of merit for the trans-
mitter as a whole. However, we are also interested in the code-by-code composition of 
the composite signal. The primary means of investigating this is to look at the distribu-
tion of power in the code domain. 

Inaccurate EVM result

Accurate rho and EVM result

(a) (b)

Peak code domain error at R-Pilot
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2.2.3 Code domain power 
Code domain power is an analysis of the distribution of signal power across the set of 
code channels, normalized to the total signal power. To analyze the composite waveform 
each code channel is decoded using a code-correlation algorithm. This algorithm deter-
mines the correlation coefficient factor for each code. Once the channels are decoded, 
the power in each code channel is determined.

In cdma2000, the measurement is complicated by the fact that the length of the Walsh 
codes varies to accommodate the different data rates and SRs of the different RCs. In 
general, as the data rate increases the symbol period is shorter. For a specific SR, the 
final chip rate is constant. Therefore, fewer Walsh code chips are accommodated within 
the symbol period — the Walsh code length is shorter. 

One effect of using variable length Walsh codes for spreading is that a shorter code 
precludes using all longer codes derived from it. Figure 16 illustrates this concept. If a 
high data rate channel using a 4-bit Walsh code such as 1, 1, -1, -1 is transmitted, all 
lower data rate channels using longer Walsh codes that start with 1, 1, -1, -1 have to be 
inactive to avoid conflicts in the correlation process at the receiver.

Figure 16. Hadamard generation of Walsh codes and the effects of using variable length Walsh codes for 
spreading.

Individual Walsh codes (or functions) are identified by Wn
N, where N is the length of the 

code and n is the row in the N x N Hadamard matrix. For example, W2
4 represents code 

2 of the 4 x 4 Hadamard matrix (4-bit Walsh code).

Therefore, W2
4 precludes using:

–– W2
8 and W6

8;

–– W2
16, W6

16, W10
16, W14

16;

–– W2
32, W6

32, W10
32, W14

32, W18
32, W22

32, W26
32, W30

32  
(not shown in Figure 16); etc.

Another way to look at the same signal is by reordering the code channels so relat-
ed code channels are adjacent to each other. The so-called bit-reverse generation of 
Walsh codes provides us with this desired code number assignment. This is the code 
generation method used in W-CDMA [4]. The codes derived from this method are called 
orthogonal variable spreading factor (OVSF) codes, as opposed to Walsh codes, in 
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W-CDMA. OVSF codes and Walsh codes are the same, only their code number as-
signment is different. The generation method is called “bit-reverse” because the code 
number in binary form is reversed (MSB is LSB, etc.) relative to the Hadamard method. 
For example, code channel 3 (binary: 011) in the Hadamard Walsh 8 matrix corresponds 
to code channel 6 (binary: 110) in the reverse-bit Walsh 8 matrix, as seen in Figure 17.

Figure 17. Hadamard versus bit-reverse.

For the reverse link, as seen earlier, the physical channels are I/Q multiplexed. HPSK is 
applied to limit the peak-to-average power ratio. However, HPSK limits the choice of 
Walsh codes. In order to benefit from this function, only even-numbered Walsh codes, 
which consist of pairs of identical consecutive chips, can be used. For example, W24 = 
(1,1,-1,-1) would meet this condition, but W14 = (1,-1,1,-1) would not [3].

To maximize the benefits of HPSK, the Walsh codes for the different channels are de-
fined as follows:

–– The R-Pilot is always spread by code  
W0

32 = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).

–– The R-FCH is always spread by code  
W4

16 = (1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1-1,-1,-1).

–– The R-DCCH is always spread by code  
W8

16 = (1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1).

–– When only one R-SCH is to be transmitted, R-SCH1 is spread by code W2
4 = (1,1,-

1,-1). Only for the highest data rates should W1
2 = (1,-1) be used. This Walsh code 

defeats the benefits of HPSK, so it should be avoided.

–– When two R-SCHs are used, the recommended configuration is to have SCH1 using 
W2

4 = (1,1,-1,-1) and SCH2 using W6
8 = (1,1,-1,-1,-1,-1,1,1). These two codes are not 

orthogonal to each other. This is not a problem because, as seen in Figure 3, the two 
channels are I/Q multiplexed (one is transmitted in I and the other one in Q). This 
makes them orthogonal regardless of the spreading code used. For high data rate 
cases, both SCHs can use shorter codes.

                        Hadamard  (Walsh codes)

                   Actual code                       Code number
                     (Walsh 8)                  In decimal   In binary

1 1 1 1  1 1 1 1 0 000

1 0 1 0  1 0 1 0 1 001

1 1 0 0  1 1 0 0 2 010

1  0  0 1   1  0  0 1 3 011

1 1 1 1    0 0 0 0 4 100

1  0 1 0   0 1 0 1 5 101

1 1 0 0  0 0 1 1 6 110

1 0 0 1  0 1  1 0 7 111

                        Bit-reverse  (OVSF codes)

                   Actual code                       Code number
                     (Walsh 8)                  In decimal   In binary

1 1 1 1  1 1 1 1 0 000

1 0 1 0  0 0 0 0 1 001

1 1 0 0  1 1 0 0 2 010

1  0  0 0   0  0  1 1 3 011

1 0 1 0    0 0 0 0 4 100

1  0 1 0   0 1 0 1 5 101

1 0 0 1  1 0 0 1 6 110

1 0 0 1  0 1  1 0 7 111
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Figure 18 shows how the selected codes for the different channels map onto the bit-re-
verse code tree. The dark grey codes are the selected codes. The light grey codes are 
non-orthogonal to the selected codes.

Figure 18. Mapping of reverse link Walsh codes onto the bit-reverse Walsh code tree. 

For the worst cases (highest data rates), the HPSK requirements will not be fulfilled. It is 
expected that this will only occur for a very small percentage of cases.

Defining the Walsh codes avoids code-usage conflicts. By limiting the choice of code 
channel configurations, the power statistics (CCDF) for the signals are also better  
determined. 

In terms of code capacity, channels with higher data rates (shorter code lengths) occupy 
more code space. For example, W1

2 occupies two times more code space as W2
4, 

and eight times more code space than W4
16. In the code domain power display, wider 

bars represent shorter code (higher data rate) channels. Figure 19 shows the code 
domain power display, in bit-reverse mode, for a signal with an R-Pilot, an R-FCH, and 
an R-SCH1. The R-SCH1 (W2

4) is much wider than the Walsh 16 channels (W0
16 and 

W4
16). 

Figure 19. Code domain power for a signal with an R-Pilot, an R-FCH, and an R-SCH1 (W2
4).
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The code domain power measurement not only helps you verify that each Walsh channel 
is operating at its proper level, but also identify problems throughout the transmitter 
design, from the coding to the RF section. In particular, the level of the inactive channels 
can provide useful information about specific impairments [6]. The projection of the error 
signal over the code domain, known as code domain error, is of even more interest. You 
want the error power to be distributed through the code domain, rather than concen-
trated in a few codes, to avoid code-dependent channel quality variations. However, 
many transmitter impairments, such as amplifier compression and LO instability, cause 
uneven distribution of the error throughout the code domain. In these cases, energy is 
lost from the active channels and appears in related code channels in deterministic ways 
[1]. For this reason, it is useful to ensure that the code domain error is under a certain 
limit. The peak code domain error measurement (shown in Figure 15b in combination 
with a composite rho measurement) indicates the maximum code domain error in the 
signal and to which code channel this error belongs.

Related to code domain power, IS-95 standards specify a pilot channel to code channel 
time tolerance and pilot channel to code channel phase tolerance for the BTS [1]. Since 
the cdma2000 MS has many similarities with a BTS, these tests will probably be part 
of the IS-2000 standard for MS. However, they are irrelevant if digital summing is used, 
since digital summing prevents delays and phase shifts between channels.

Apart from looking at the code domain power, it is useful to analyze a specific code 
channel. The following sections describe some analysis tools and how they can be ap-
plied. Figure 20 shows how the references for these measurements are calculated.

Figure 20. Process to calculate code domain power, symbol EVM, symbol power and chip power versus time, 
and the demodulated bits for a cdma2000 reverse link signal.
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2.2.4 Symbol EVM
By descrambling and despreading the signal, you can analyze the constellation for 
a specific code channel at the symbol level, even in the presence of multiple code 
channels. The measured signal is complex descrambled, despread, and BPSK decoded 
to symbols. The ideal symbols are then BPSK encoded to obtain the reference at the 
BPSK symbol level. This reference is then compared to the measured, despread symbols 
(Figure 20). 

An RF impairment that affects symbol EVM will also affect the composite EVM. For ex-
ample, an amplifier compression problem will appear both in the composite EVM and in 
the symbol EVM measurement. However, because of the processing gain, symbol EVM 
will mute the impairment. So why use symbol EVM?

Symbol EVM provides the bridge between RF and the demodulated symbols. Since it 
includes the processing gain, it provides baseband engineers a measure of modulation 
quality closer to real-life performance. In this sense, you can think of it as the actual 
quality the user will experience in that channel (similar to the reciprocal of bit error rate 
(BER)). 

The relationship between symbol EVM and chip EVM depends on the Walsh code 
length. For short Walsh code channels (less processing gain) chip modulation errors 
have a significant effect on symbol EVM. But for long code channels (more processing 
gain), chip modulation errors have little effect on symbol EVM. Therefore, there is a 
compromise between the data rate and the modulation quality. In this sense, symbol 
EVM is particularly useful to baseband DSP engineers to analyze how different im-
pairments affect the quality of channels at different data rates. For example, Figure 21 
shows the cdma2000 code domain power measurement (bit reverse display) for a signal 
with an R-Pilot, an R-FCH, and an R-SCH1 (W1

2). The signal suffers from high-frequen-
cy LO interference. Figure 21a shows the constellation and symbol EVM (around 19 per-
cent) for the R-FCH (W4

16) channel. Figure 21b shows that the higher data rate channel, 
R-SCH1 (W1

2), suffers from a higher symbol EVM (around 28 percent).

Figure 21. cdma2000 code domain power measurement (bit reverse display) for a signal with an R-Pilot, an 
R-FCH (W4

16), and an R-SCH1 (W1
2). Signal has a high-frequency LO interference problem. (a) Symbol EVM 

measurement for the R-FCH. (b) Symbol EVM measurement for the R-SCH1. 

(b)(a)

Impairment causes higher symbol EVM in high data rate channel
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2.2.5 Symbol power versus time
Analyzing the power for a specific code channel versus time (or versus symbol) can be 
particularly useful to monitor the power and response of the MS power control system 
for different channels. For example, Figure 22 shows a symbol power increase of .5 dB in 
the R-FCH, for the same signal used for Figure 21, but with no impairments. 

Figure 22. (a) cdma2000 code domain power measurement (bit reverse display) for a signal with an R-Pilot, 
an R-FCH (W4

16 at - 12.77 dB), and an R-SCH1 (W1
2 at - 3.77 dB). (b) Symbol power versus time for the R-FCH. 

Figure 23 shows the symbol power versus time in combination with the chip power for 
the signal versus time. This is particularly useful for system integrators to analyze the 
power amplifier response (ripple) to a series of power control commands.

Figure 23. Chip power versus time for a signal with an R-Pilot, an R-FCH (W416 at –12.77 dB) and an R-SCH1 
(W12 at –3.77 dB), combined with symbol power versus time for the R-FCH.

(a) (b)

Chip power versus time

Symbol power versus time F-FCH

-12.77 dB
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2.2.6 Demodulated bits
By obtaining the demodulated symbols after descrambling and despreading for each 
code channel, the correct symbol patterns can be verified. This is particularly important 
for the power control bits, since power control is absolutely critical to system perfor-
mance. In cdma2000, the MS uses the R-Pilot to send power control bits to the BTS. The 
power control bits are multiplexed with the pilot data bits. Figure 24 shows the demodu-
lated bits (symbols before de-interleaving and decoding) for the R-Pilot of a cdma2000 
signal with the same channel configuration as in previous figures.

Figure 24. (a) cdma2000 code domain power measurement (bit-reverse display) for a signal with R-Pilot, an 
R-FCH (W4

16 at –12.77 dB), and an R-SCH1 (W1
2 at –3.77 dB). (b) Demodulated bits for the R-Pilot. (c) Symbol 

power versus time for the R-Pilot.

Demodulated bits is an important troubleshooting tool for baseband engineers to 
identify coding, interleaving, and power control bit errors. In many cases it can help you 
clarify situations where the BTS and MS are having problems communicating with each 
other. Analyzing the demodulated bits may confirm whether the error is coming from the 
MS coding and interleaving or the BTS de-interleaving and decoding process.

2.3 Measuring receiver performance

Since the air interface for the cdma2000 forward link is similar to cdmaOne, the same is-
sues and measurements for cdmaOne mobile receiver test apply to cdma2000. However, 
in cdma2000 the testing is complicated by a couple of factors that are fundamental for a 
3G system: capability for variable data rates and higher capacity. The following sections 
describe how this impacts the mobile receiver test and what new source requirements 
may be needed to perform appropriate testing.

2.3.1 Performance tests at variable data rates
As seen earlier, cdma2000 uses different RCs and Walsh code lengths to accommodate 
the variable data rates. In order to demodulate a channel the MS receiver must identify 
the channel’s data rate. The IS-2000 standard requires demodulation performance tests 
be made for a large number of channels at different RCs and data rates to ensure good 
receiver performance. This poses a challenge both in the time spent and source require-
ments for the test.

(a)
(c)

(b)
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To perform these tests you need a source capable of simulating fully-coded forward link 
signals with channels at all possible RCs and data rates. You must be able to change 
parameters and input data. The best solution for this is to use a real-time cdma2000 
generator, with which you can change the channel configuration and parameters to 
generate a new signal in a few seconds. (See appendix for information on available 
cdma2000 real-time generators.)

2.3.2 Quasi-orthogonal functions
High data rate channels occupy a lot of the BTS code space. There may be situations 
where a few users (or even a single user) transmitting data at high data rates use all the 
available codes. To obtain more code space, the IS-2000 standard specifies a new set of 
orthogonal codes to complement the existing Walsh codes. The new codes are known 
as quasi-orthogonal functions (QOF). The QOFs increase the code space at the expense 
of higher interference.

The receiver must be able to demodulate Walsh channels in the presence of QOF 
channel interference. Therefore, the receiver tester source must be able to generate 
cdma2000 channels spread with QOF codes.

Appendix: Keysight Solutions  
for cdma2000 MS Design and Test

This section provides a list of Keysight’s solutions that can help you develop and test 
your cdma2000 MS design.

Design software and simulation for hardware verification 
Connectivity between Keysight electronic design automation software and Keysight test 
equipment, such as signal sources and signal analyzers, helps minimize development 
risk and costs by identifying problems early in the design and fabrication cycle. With 
connected simulation and test solutions from Keysight Technologies, the designer’s 
testbench consists not only of hardware instrumentation, but also the Advanced Design 
System (ADS) for design and simulation of systems and circuits. Connected solutions 
let cdma2000 designers quickly perform simulations to evaluate design trade-offs and 
what-ifs, and then turn the simulated signal into a real RF test signal on the testbench 
for hardware test. Conversely, cdma2000 designers can take the measured output sig-
nal from the DUT and bring it into ADS for additional analysis in the simulation environ-
ment. 

cdma2000 system designers utilizing connected solutions can:

–– Evaluate system-level performance with partial RF hardware, using simulation to 
model missing hardware.

–– Evaluate RF performance (such as BER), using simulation to model missing base-
band functionality.

–– Evaluate system performance more continuously throughout the design/fabrication 
cycle to help reduce risk and costs.

–– Evaluate system performance on the test bench with simulated impairments.

cdma2000 component designers benefit from connected solutions because they can 
use realistic signals for testing that reflect the environment in which the component will 
be used. Applications include:

–– testing/demonstrating a component DUT. Modeling a transmitter/ receiver chain in 
simulation to show how it would perform in a system
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–– testing/demonstrating a component with various signal formats modeled in  
simulation

–– evaluating performance limits of a DUT — how impaired can the input signal be and 

still meet specifications?

To find out more about connected solutions and ADS cdma2000 library refer to  
www.keysight.com/find/ads

Signal generation

For component testing, the Keysight E4438C ESG with Option E4438C-4011 gener-
ates multi-carrier cdma2000 test signals in the forward and reverse link directions. The 
statistically-correct signals are designed to stress cdma2000 handset components and 
subsystems, just as a real-world signals would. An easy-to-use interface enables you to:

–– select the spreading rate (SR1 or SR3)

–– generate up to 12 carriers for multi-carrier testing 

–– use the table editor to fully configure up to 256 channels for each carrier per your 
requirements 

–– select from several predefined cdma2000 channel configurations, including 3GPP2 
standard setups

–– clip the peak-to-average signal power to reduce stress on amplifiers 

–– view the CCDF curve and code domain power of signals Keysight also offers the 
ESG-D/DP series RF signal generators with basic capability for component test 
applications when the performance of the E4438C ESG is not required.

For receiver testing, the E4438C ESG with Option E4438C-4011 produces a cdma2000 
test signal with fully-coded forward and reverse link frames. The high level of channel 
coding enables thorough evaluation of receiver demodulation analysis capabilities at 
various design stages, from ASICs to completed receiver designs. The stream of ful-
ly-coded frames is generated continuously on the carrier (SR1) to enable BTS sensitivity, 
dynamic range, adjacent channel selectivity, traffic channel demodulation, FER/CRC 
verification, and BER testing. An easy-to-use interface allows you to:

–– quickly configure BTS parameters such as filter type or long code state 

–– fully configure channels using a convenient table editor

–– select channel types: pilot, sync, paging, quick paging, fundamental, supplemen-
tal 1, supplemental 2, OCNS

–– define relevant parameters, including Walsh code, data type, radio configuration, 
bit rate, individual channel power 

–– simulate up to eight forward link channels in one ESG 

–– choose single-ended or differential I/Q outputs for baseband verification

–– modify Eb/No or C/N to test the effects of noise

The cdma2000 signals for both applications are backward compatible with 
IS-95 systems when RC1 or RC2 are chosen. Please see the Option E4438C-401 prod-
uct overview (literature number 5988-4430EN) on the Keysight Web site to learn about 
more CDMA features, specifications, and applications. To obtain more information on 
the Keysight ESG go to www.keysight.com/find/ESG.

1.  Requires a baseband generator, Option E4438C-001 (8-Msa waveform memory) or Option 
E4438C-002 (32-Msa memory). A single baseband generator provides both arbitrary waveform and 
real-time modes for component and receiver test applications.
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cdma2000 1xEvolution (1xEV) testing
The E4438C ESG can produce cdma2000 1xEV test signals with the Signal Studio 
software options. Signal Studio options provide intuitive graphical user interfaces for 
configuring the 1xEV test signals to play on the ESG. The high data rates and modulation 
types specified in the standards may be selected. The signals can be set up to exercise 
components under a variety of crest factor conditions and channel setups. The full 
coding of traffic and control channels, as well as pseudo-random payload data, enable 
PER and BER testing of access terminal receivers in the forward link. Visit www.keysight.
com/find/signalstudio to see the latest 1xEV technologies available.

Power meters and sensors
The Keysight EPM-P series power meters and E9320 peak and average power sensors 
provide peak, average and peak-to-average ratio power measurements on cdma2000 
signals. Fast test times, with a measurement speed of up to 1,000 corrected readings 
per second, over the general purpose instrument bus (GPIB), help increase throughput 
to meet time-to-market and time-to-volume goals. The E9320 peak and average power 
sensors have a maximum video bandwidth of 5 MHz, ideal for cdma2000 power mea-
surements. 

EPM-P analyzer software is provided on a CD-ROM, and is a PC-based tool for pulse 
and statistical analysis. For cdma 2000, statistical analysis of the power distribution 
provides essential characterization to optimize system design, such as testing for ampli-
fier compression. For more information on power meters and sensors go to  
www.keysight.com/find/powermeters.

Power supplies and software for battery drain analysis 
Keysight 66319B/D, 66321B/D single and dual output high performance power supplies 
provide very fast transient output response with a built-in advanced DSP-based digitiz-
ing measurement system. Combined with the 14565A Device Characterization Software, 
battery drain current can be recorded, visualized, and analyzed from microseconds 
to weeks in duration. They provide the following functions for testing digital wireless 
devices:

–– replace the main battery (single or dual output) and power adapter (dual output)

–– emulate battery characteristics through fast output response and programmable 
output resistance

–– minimize transient voltage drop over long wiring resulting from the pulsed current 
drain

–– source/sink capability on main output for testing and calibrating battery charger 
circuitry

–– accurately measure battery current drains for all operating modes (off, sleep, stand-
by, and active modes)

–– with 14565A software capture, visualize, and analyze current drain waveforms down 
to 15.6 ms resolution

–– with 14565A software record long-term battery drain up to 1,000 hours; visualize 
and analyze results by either data log or CCDF display
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Signal analysis

This table provides the list of Keysight signal analyzers and their cdma2000 measure-
ment capabilities for MS transmitter test (as of November 2002). For more information 
on signal analyzers go to www.keysight.com/find/spectrumanalyzer.

Table 1. Keysight signal analysis capabilities for cdma2000 SR1.

cdma2000 mobile test application for the Keysight 
8960 Series 10 wireless communications test set

Keysight’s cdma2000 mobile test solution provides the essential RF parametric test and 
call processing capabilities you will need to verify the quality and RF performance of 
your cdma2000 phones, allowing you to finalize product designs and time-to-volume. 
This test solution provides the capability to perform extremely fast cdma2000 transmit-

Channel power

Occupied bandwidth

Out-of-band emissions
(spurious/harmonics)

Peak/average power ratio

CCDF

3

Notes:
1. Measurement preconfigured for cdma2000.
2. Some measurements pre-configured for cdma2000 (or cdmaOne). Parameters for other measurements  
 must be set up manually as indicated.
3. Manual measurement (no automatic spurious search or ACPR measurement).
4. There are several interpretations of rho. The 89400 series vector signal analyzers can make the rho
 measurement with certain assumptions.
5. Manual measurement.
6. Measurements can be made via optional 89600 software link.

Rho

QPSK EVM

Composite
EVM

I/Q offset

Frequency
accuracy
Code domain
power
Symbol
EVM
Symbol power
vs. time
Composite
chip power
vs. time
Demodulated
bits

ACPR

In-band
spurious

In-band
emissions

Modulation
quality

4

3

E4406A
VSA

transmitter
tester1

89400A series
vector signal 

analyzer2

89600
vector signal 

analyzer2

PSA
series 

 spectrum 
analyzer1

Measurements
ESA-E 
series 

 spectrum 
analyzer1

3

3 3

3

5

3

3

6

6

6

6

6

6

6

6

Vector signal analyzers Spectrum analyzers

Keysight signal analyzers
cdma2000
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ter and receiver tests using call processing to establish a traffic or fundamental channel 
using standard test service options or in test modes for mobile phone calibration. For 
more information on the cdma2000 mobile test application go to  
www.keysight.com/find/8960. 

Transmitter tests:
–– maximum power

–– minimum power

–– multi-coded waveform quality (composite rho and EVM)

–– hand-off waveform quality

–– open loop power accuracy

–– open loop power calibration

–– access probe power

–– code-domain power

Receiver tests:
–– sensitivity

–– dynamic range

–– demodulation with additive white Gaussian noise (AWGN)

The fully coded, cdma2000 forward-link emulation supports RCs 1 through 5 and all 
supplemental channel data rates associated with those configurations. Comprehensive 
signal generation capability includes the cdma2000 channels (F-pilot, F-sync, F-paging, 
F-FCH, F-SCH, F-OCNS), cdma2000 modulation (parallel BPSK for pilot, sync, and pag-
ing channels and QPSK for F-FCH), and an AWGN source (1.8 MHz minimum bandwidth). 
Flexible user control of the forward link emulation is provided through easy-to-use front 
panel control and remote general purpose instrument bus (GPIB).

Because this cdma2000 test solution is based on the high-performance Keysight 8960 
Series 10 test set, you gain the additional benefits of extremely fast measurement 
speed, ease of programming, accuracy, reliability, and worldwide service and support. 
These proven features will help you shorten test development time, increase throughput, 
and minimize support costs. The 8960 Series 10 is also a powerful multi-format test 
platform currently offering test applications for global system for mobile communica-
tion (GSM), general packet radio service (GPRS), and advanced mobile phone system 
(AMPS)/IS-136 giving you industry leading manufacturing flexibility.

Instruments used for measurement examples 
The measurement examples and screen images in this application note were obtained 
using the following instruments:

Keysight E4438C ESG 
vector signal generator

Keysight PSA Series 
high performance 
spectrum analyzer
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Acronym glossary 
2G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                            Second Generation
3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                              Third Generation
3GPP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        Third-Generation Partnership Project 2
ACP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       Adjacent Channel Power
ACPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 Adjacent Channel Power Ratio
ADS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     Advanced Design System
AMPS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              Advanced Mobile Phone System
ARIB  . . . . . . . . . . . . . . . . . . . . . . . . . .                          Japanese Association of Radio Industries and Businesses
AWGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               Additive White Gaussian Noise
BPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     Binary Phase Shift Keying
BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      Base Transceiver Station
CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                Complementary Cumulative Distribution Function
CDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                Code Domain Multiple Access
cdmaOne  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     Name identifying the EIA/TIA standard 
	 (commonly referred to as IS-95) for 2G
cdma2000  . . . . . . . . . . . . . . . . . . . . . .                      Name identifying the EIA/TIA standard (IS-2000) for 3G
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     Cyclic Redundancy Check
DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                              Direct Sequence
DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      Digital Signal Processing
EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       Error Vector Magnitude
F-DCCH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         Forward Dedicated Control Channel
FER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                             Frame Error Rate
F-FCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               Forward Fundamental Channel
FIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        Finite Impulse Response 
F-Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          Forward Paging
F-Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                              Forward Pilot
F-SCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forward Supplemental Code Channel
F-SCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               Forward Supplemental Channel
F-Sync  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                             Forward Sync
F-Traffic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          Forward Traffic
GMSK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               Gaussian Minimum Shift Keying
GPIB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               General Purpose Instrument Bus
GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 General Packet Radio Service
GSM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      Global System for Mobile Communications
GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     Global Positioning System
HPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    Hybrid Phase Shift Keying
IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                         Intermediate Frequency
IMT-2000  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              International Mobile Telecommunications-2000
I/Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          In-phase/Quadrature
IS-136 . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            Interim Standard for US Time Domain Multiple Access
IS-2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               EIA/TIA Interim Standard 2000 (see cdma2000) 
IS-95 . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            Interim Standard for US Code Division Multiple Access
LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                               Local Oscillator
LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          Least Significant Bit
MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                Mobile Station
MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           Most Significant Bit
OCNS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          Orthagonal Channel Noise Simulator
OCQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . .                           Orthogonal Complex Quadrature Phase Shift Keying
OQPSK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         Offset Quadrature Phase Shift Keying
OVSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         Orthangonal Variable Spreading Factor
PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           Phase Shift Keying
QAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             Quadrature Amplitude Modulation
QOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   Quasi-Orthogonal Functions
QPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                Quadrature Phase Shift Keying
R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    Research and Development
RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           Radio Configuration
RF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                              Radio Frequency
R-CCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          Reverse Common Control Channel
R-DCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         Reverse Dedicated Control Channel
R-EACH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          Reverse Enhanced Access Channel
R-FCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               Reverse Fundamental Channel
RMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                            Root Mean Square
R-Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                             Reverse Pilot
R-SCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              Reverse Supplemental Channel
SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                               Spreading Rate
TIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        Telecommunications Industries Association
TTA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               Korean Telecommunications Technology Association
TTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       Telecommunication Technology Committee
W-CDMA . . . . . . . . . . . . . . . . . . . . . . . . . Wideband-Code Division Multiple Access (3G system)
UE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                               User Equipment

For more information regarding 
these acronyms and other wireless 
industry terms, please consult our 
wireless dictionary at www.keysight.
com/find/wireless.
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