Errata

Title & Document Type: 83731A/B and 83732A/B Synthesized Signal Generator

Programming Guide

Manual Part Number: 83731-90129

Revision Date: July 1997

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

Programming Guide

HP 83731A/32A and HP 83731B/32B Synthesized Signal Generators HP part number: 83731-90129

Printed in USA July 1997 Supersedes April 1995

Notice.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

© Copyright Hewlett-Packard Company 1995, 1997 All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws. 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA

The 83731A/32A and 83731B/32B Synthesized Signal Generators

The HP 83731A/32A and HP 83731B/32B Synthesized Signal Generators (referred to as "synthesizers" throughout this manual) provide FM, ϕ M, logarithmic/linear AM, phase modulation, and pulse modulation capability. The HP 83731A/31B has a carrier frequency range of 1 GHz to 20 GHz and the HP 83732A/32B has a carrier frequency range of 10 MHz to 20 GHz. Specification information can be found in Chapter 4 in the HP 83731A/32A Synthesized Signal Generators User's Guide and in the HP 83731B/32B Synthesized Signal Generators User's Guide.

This programming guide provides specific, detailed information about the commands used to program the synthesizer with firmware revision number 10.0 or greater.

Notes

- 1. This manual applies to instruments with firmware revision 10.0 or greater.
- 2. If you have an HP 83731A/32A instrument with firmware revision number < 10.0, refer to the HP 83731A/32A Synthesized Signal Generators Programmer's Reference (83731-90005).
- 3. To view firmware revision, press (SPCL), (1), (HZ) (ENTER).

In This Book

This book provides information about the various commands used in programming the synthesizer, error messages, and regulatory information. Information is divided into chapters as follows:

- Chapter 1, "Getting Started Programming," contains general HP-IB information, introduces the Standard Commands for Programmable Instruments (SCPI), and provides example programs.
- Chapter 2, "Programming Commands," contains entries on all of the programming commands used by the synthesizer. This chapter is subdivided into sections that contain groupings of related commands. For example, all commands related to automatic level control are grouped in one tabbed section.
- Chapter 3, "Error Messages," contains a list of all of the error messages that might be generated during use of the instrument. Each entry in the list contains a sequence that can be followed to recover from the error condition.
- Chapter 4, "HP 8673 Compatibility Guide," contains HP 8673 to SCPI compatibility information.
- Chapter 5, "Legal and Regulatory Information," contains SCPI conformance information. The product warranty is also contained in this chapter.

Contents

1.	Getting Started Programming	
	HP-IB General Information	
	Interconnecting Cables	3
	Instrument Addresses	5
	HP-IB Instrument Nomenclature 1-	6
	Listener	6
	Talker	6
	Controller	
	Programming the Synthesizer	6
	HP-IB Command Statements 1-	7
	Abort	8
	Related statements used by some computers 1-	8
	Remote	9
	Remote	9
	Local Lockout 1-1	0
	Local Lockout	.0
	Local	0
	Some BASIC examples 1-1	.0
	Clear	. 1
	Some BASIC examples 1-1	.1
	Related statements used by some computers 1-1	.1
	Output	2
	A BASIC example 1-1	.2
	Related statements used by some computers 1-1	2
	Enter	3
	Related statements used by some computers 1-1	.4
	Getting Started with SCPI 1-1	5
	Definitions of Terms	6
	Standard Notation	7
	Command Mnemonics 1-1	7
	Angle Brackets 1-1	7
	How to Use Examples 1-1	7
	Command Examples 1-1	8
	Response Examples 1-1	
	Essentials for Beginners 1-1	
	Program and Response Messages 1-2	3(

Forgiving Listening and Precise Talking	1-20
Types of Commands	1-20
Subsystem Command Trees	1-22
The Command Tree Structure	1-22
Paths Through the Command Tree	1-22
More About Commands	1-25
More About Commands	1-25
Implied Commands	1-25
Optional Parameters	1-25
Program Message Examples	1-26
	1-26
Example 2	1-26
Example 3	1-27
Example 4	1-27
Reading Instrument Errors	1-28
Details of Commands and Responses	1-29
Program Message Syntax	1-30
SCPI Subsystem Command Syntax	1-31
Common Command Syntax	1-32
Response Message Syntax	1-33
SCPI Data Types	1-34
Parameter Types	1-35
Numeric Parameters	1-35
Extended Numeric Parameters	1-36
Discrete Parameters	1-37
Boolean Parameters	1-37
Response Data Types	1-38
Real Response Data	1-38
Integer Response Data	1-38
Discrete Response Data	1-39
String Response Data	1-39
Programming Typical Measurements	1-40
Using the Evennle Programs	1-40
Using the Example Programs	1-41
Program Comments	1-41
Local Lockout Demonstration, Example Program 2	1-42
Program Comments	1-42
Internally Leveled CW Signal, Example Program 3	1-44
Program Comments	1-44
Internally Leveled AC-Coupled External FM Signal,	1-44
Example Program 4	1-45
	エュエの

	Program Comments	1-45
	Internally Leveled AC-Coupled Internal FM Signal, Example	
	Program 5	1-46
	Program Comments	1-47
	Power Sweep Routine, Example Program 6	1-48
	Program Comments	1-48
	Generating Repetitive, Internal Pulse Modulation,	
	Example Program 7	1-49
	Program Comments	1-49
	Generating Externally-Triggered Pulse Modulation,	
	Example Program 8	1-51
	Program Comments	1-51
	Generating Repetitive, External Pulse Modulation,	
	Example Program 9	1-53
	Program Comments	1-53
	Generating a Doublet Pulse, Example Program 10	1-55
	Program Comments	1-55
	Generating Gated Pulse Modulation, Example Program	
	11	1-57
	Program Comments	1-57
	Generating an Internal Log AM Signal, Example	
	Program 12	1-59
	Program Comments	1-60
	Generating Simultaneous Log AM and Pulse Modulation,	
	Example Program 13	1-61
	Program Comments	1-61
	Level Correction Routine, Example Program 14	1-63
	Program Comments	1-64
	Saving and Recalling States, Example Program 15	1-67
	Program Comments	1-68
R	elated Documents	1-69
2. Pr	ogramming Commands	
	ommand Syntax	2-3

2a.			
	[SOURce[1]:]POWer:ALC:PMETer		2a-3
	Query Syntax		2a-4
	See Also		2a-4
	[SOURce[1]:]POWer:ALC:PMETer:STEP		2a-5
	Query Syntax		2a-6
	See Also		2a-6
	[SOURce[1]:]POWer:ALC:SOURce		2a-7
	Query Syntax		2a-7
	See Also	 	2a-8
2b.	Carrier Commands		
	[SOURce[1]:]FREQuency[:CW :FIXed]		2b-3
	Query Syntax		2b-4
	See Also		2b-4
	[SOURce[1]:]FREQuency[:CW :FIXed]:STEP		2b-5
	Query Syntax		2b-6
	See Also		2b-6
	[SOURce[1]:]FREQuency:MULTiplier		2b-7
	Query Syntax		2b-8
	See Also		2b-9
	[SOURce[1]:]FREQuency:MULTiplier:STEP		2b-10
	Query Syntax		2b-11
	See Also	 •	2b-11
2c.	Instrument Information Commands		
	*IDN? (Identification Query)	 	2c-3
	*OPT? (Option Identification Query)		2c-4
	OUTPut:IMPedance?		2c-5
	[SOURce[1]:]ROSCillator:SOURce?		2c-6
	See Also		2c-6
	SYSTem:ERRor?		2c-7
	See Also		2c-8
	SYSTem:VERSion?		2c-9
	*TST? (Self-Test Query)		2c-10

2d.	Instrument State Commands	
	*LRN? (Learn Device Setup Query) 2d-	
	See Also	
	MEMory:RAM:INITialize 2d-	
	See Also	
	*RCL (Recall Command) 2d-	
	See Also	
	*RST (Reset Command) 2d-	
	See Also	
	*SAV (Save Command)	
	See Also	
	SYSTem:PRESet 2d-1	
	See Also	3
2e.	Level Correction Commands	
	MEMory:CATalog[:ALL]? 2e-	3
	See Also	3
	MEMory:CATalog:TABLe? 2e-	4
	See Also	4
	MEMory:TABLe:FREQuency 2e-	5
	Query Syntax 2e-	6
	See Also	7
	MEMory:TABLe:FREQuency:POINts? 2e-	8
	See Also	8
	MEMory:TABLe:LOSS[:MAGNitude] 2e-	9
	Query Syntax	0
	See Also	1
	MEMory:TABLe:LOSS[:MAGNitude]:POINts? 2e-1	2
	See Also	2
	MEMory:TABLe:SELect 2e-1	3
	Query Syntax	4
	See Also	4
	[SOURce[1]:]CORRection:CSET[:SELect] 2e-1	.5
	Query Syntax	.6
	See Also	6
	[SOURce[1]:]CORRection:CSET:STATe 2e-1	7
	Query Syntax	8
	See Also	18
	[SOURce[1]:]CORRection:FLATness[:DATA] 2e-1	
	Query Syntax	30
	See Also	20

	[SOURce[1]:]CORRection:FLATness:POINts Query Syntax							2e-21 2e-21
	See Also							2e-22
	[SOURce[1]:]CORRection[:STATe]							2e-23
	Query Syntax							2e-24
	See Also							2e-24
	SYSTem:COMMunicate:PMETer:ADDRess.							2e-28
	Query Syntax							2e-26
	See Also	•	•	•		•		2e-26
2f.	Macro Commands							
	*DMC (Define Macro Command)							2f-3
	See Also	•						2f-3
	*EMC (Enable Macros)							2f-4
	Query Syntax							2f-4
	See Also							2f-5
	*GMC? (Get Macro Contents Query)							2f-6
	See Also							2f-6
	See Also							2f-7
	See Also							2f-7
	See Also							2f-8
	See Also							2f-8
	*PMC (Purge Macros Command)							2f-9
	See Also							2f-9
	*RMC (Remove Macro Command)							2f-10
	See Also	•	•	•	•	•	•	2f-10
2g.	Miscellaneous Commands							
	DISPlay[:WINDow][:STATe]							2g-3
	Query Syntax							2g-4
	SYSTem:KEY							2g-5
	Query Syntax	•	٠	•				2g-7
2h.	Modulation Commands							
	[SOURce[1]:]AM[:DEPTh]							2h-3
	Query Syntax							2h-4
	See Also	_	_	_	_			2h-5
	$[SOURce[1]:]AM[:DEPTh]:STEP \dots$							2h-6
	Query Syntax							2h-7
	See Also							2h-7
	[SOURce[1]:]AM:INT:FREQ	_		_				2h-8

Query Syntax			2h-9
See Also			2h-9
See Also			2h-10
Query Syntax			2h-11
See Also			2h-11
[SOURce[1]:]AM:INT:FUNC			2h-12
Query Syntax			2h-12
Query Syntax			2h-13
[SOURce[1]:]AM:SENSitivity			2h-14
Query Syntax			2h-15
See Also			2h-15
[SOURce[1]:]AM:SOURce			2h-16
			2h-17
Query Syntax			2h-18
Query Syntax			2h-18
See Also			2h-19
See Also			2h-20
Query Syntax			2h-20
See Also			2h-20
[SOURce[1]:]FM:COUPling			2h-21
Advantages of DC FM			2h-21
Disadvantages of DC FM			2h-22
Query Syntax			2h-22
See Also			2h-22
[SOURce[1]:]FM[:DEViation]			2h-23
Query Syntax			2h-24
See Also			2h-25
See Also			2h-26
Query Syntax			2h-27
See Also			2h-27
[SOURce[1]:]FM:INT:FREQ			2h-28
Query Syntax			2h-29
See Also			2h-29
[SOURce[1]:]FM:INT:FREQ:STEP			2h-30
Query Syntax			2h-31
See Also			2h-31
[SOURce[1]:]FM:INT:FUNC			2h-32
Query Syntax			2h-32
See Also			2h-33
See Also			2h-34
Query Syntax			2h-35
agazij zjiliani			

See Also	2h-36
[SOURce[1]:]FM:SOURce	2h-37
Query Syntax	2h-38
[SOURce[1]:]FM:STATe	2h-39
Query Syntax	2h-39
See Also	2h-40
See Also	2h-41
See Also	2h-41
See Also	2h-42
See Also	2h-42
[SOURce[1]:]PM:COUPling	2h-43
Query Syntax	2h-44
See Also	2h-44
[SOURce[1]:]PM[:DEViation]	2h-45
Query Syntax	2h-47
See Also	2h-47
[SOURce[1]:]PM[:DEViation]:STEP	2h-48
Query Syntax	2h-49
See Also	2h-49
[SOURce[1]:]PM:INT:FREQ	2h-50
Query Syntax	2h-51
See Also	2h-52
[SOURce[1]:]PM:INT:FREQ:STEP	2h-53
Query Syntax	2h-54
See Also	2h-54
[SOURce[1]:]PM:INT:FUNC	2h-55
Query Syntax	2h-55
See Also	2h-56
[SOURce[1]:]PM:RANGe	2h-57
Query Syntax	2h-58
See Also	2h-58
[SOURce[1]:]PM:SENSitivity	2h-59
Query Syntax	2h-60
Query Syntax	2h-61
[SOURce[1]:]PM:SOURce	2h-62
Query Syntax	2h-63
See Also	2h-63
[SOURce[1]:]PM:STATe	2h-64
Query Syntax	2h-65
See Also	2h-65
See Also	2h-66

Query Syntax	2h-67
	2h-67
See Also	2h-68
Query Syntax	2h-68
Query Syntax	2h-69
[SOURce[1]:]PULM:STATe	2h-70
Query Syntax	2h-70
See Also	2h-71
[SOURce[1]:]PULSe:DELay	2h-72
Query Syntax	2h-73
See Also	2h-74
[SOURce[1]:]PULSe:DELay:STEP	2h-75
Query Syntax	2h-76
See Also	2h-76
[SOURce[1]:]PULSe:DOUBLe[:STATe]	2h-77
Query Syntax	2h-77
Query Syntax	2h-78
[SOURce[1]:]PULSe:FREQuency	2h-79
Query Syntax	2h-80
See Also	2h-81
[SOURce[1]:]PULSe:FREQuency:STEP	2h-82
Query Syntax	2h-83
See Also	2h-83
[SOURce[1]:]PULSe:PERiod	2h-84
Query Syntax	2h-85
See Also	2h-86
[SOURce[1]:]PULSe:PERiod:STEP	2h-87
Query Syntax	2h-88
See Also	2h-88
[SOURce[1]:]PULSe:TRANsition[:LEADing]	2h-89
Application for Manual Pulse Rise Time and Fall Time	
Selection	2h-90
Query Syntax	2h-91
See Also	2h-91
[SOURce[1]:]PULSe:TRANsition:STATe	2h-92
Application for Manual Pulse Rise Time Selection	2h-93
Query Syntax	2h-93
See Also	2h-94
[SOURce[1]:]PULSe:TRANsition:TRAiling	2h-95
Application for Manual Pulse Rise Time and Fall Time	31. 90
Selection	2h-96

	Query Syntax	•	•	•	•	•		•	•	2h-97
	See Also				•	•			•	2h-97
	[SOURce[1]:]PULSe:WIDTh	•	٠	•	•	•	•	•	•	2h-98
	Query Syntax	٠	•	•	•	٠	•	•	•	2h-99
	See Also	•	•	•	•	•	•	•	٠	2h-100
	[SOURce[1]:]PULSe:WIDTh:STEP		•	•	•	•	•	•	•	2h-101
	Query Syntax	•		•	•	•	•	•	•	2h-102
	See Also									2h-102
	TRIGger[:SEQuence[1] :STARt]:SOURce			•						2h-103
	Query Syntax									2h-103
	See Also									2h-104
	TRIGger:SEQuence2:SLOPe									2h-105
	See Also									2h-105
	TRIGger:SEQuence2:STOP:SOURce									2h-106
	Query Syntax									2h-106
	See Also									2h-107
2i.	Power Level Commands									
	[SOURce[1]:]POWer[:LEVel]									2i-3
	Query Syntax									2i-5
	See Also									2i-5
	[SOURce[1]:]POWer[:LEVel]:STEP									2i-6
	Query Syntax									2i-7
	See Also									2i-7
2j.	Programmable Interface Commands									
	*OPC (Operation Complete)									2j-3
	Query Syntax									2j-3
	See Also									2j-4
	SYSTem:COMMunicate:GPIB:ADDRess									2j-5
	Query Syntax									2j-5
	See Also									2j-6
	SYSTem:LANGuage									2j-7
	Query Syntax									2j-8
	UNIT:FREQuency									2j-9
	Query Syntax									2j-10
	UNIT:POWer :VOLTage									2j-12
	Query Syntax									2j-13
	UNIT:TIME									2j-14
	Query Syntax									2j-15
	*WAI (Wait-to-Continue Command)									

	See Also	•	•		•	•	2j-16
2k.	RF Output Control Commands						
	OUTPut:PROTection[:STATe]						2k-3
	Query Syntax						2k-4
	See Also						2k-4
	OUTPut[:STATe]						2k-5
	Query Syntax						2k-5
	See Also						2k-6
	[SOURce[1]:]POWer:ATTenuation:AUTO						2k-7
	Advantages						2k-7
	Disadvantages						2k-8
	Query Syntax						2k-8
	See Also						2k-9
	[SOURce[1]:]POWer:PROTection:STATe						2k-10
	Pulsed Power Pre-Calibration Program						2k-11
	Program Comments						2k-13
	Query Syntax						2k-14
	See Also						2k-15
21.	Status Register Commands						
21.	The Status Register System						21-3
	General Status Group Model						21-3
	Condition Register						21-4
	Negative Transition Register	•	•	•	•	•	21-4
	Positive Transition Register	•	•	•	•	•	21-4
	Event Register	•	•	•	•	•	21-5
	Enable Register						21-5
	Synthesizer Status Groups	•	•	•	•	•	21-5
	The Status Byte Group	•	•	•	•	•	21-5
	The Standard Event Status Group	•	•	•	•	•	21-6
	The Standard Operation Status Group						21-7
	The Questionable Data Status Group						21-7
	Status Register System Programming Examp.						21-8
	Program Comments						21-8
	*CLS (Clear Status Command)						2l-10
	See Also						2l-10
	*ECE (Ctandard Event Status Enable)	•	•	•	•	•	21-10
	*ESE (Standard Event Status Enable)	•	•	•	•	•	21-11
	Query Syntax						21-12
	See Also	٠	•	•	•	•	21-12 21-13
	ESR: (Standard Event Status Register Query)		•	•	•	•	71-10

Status Reporting	21-14
	21-14
*PSC (Power-On Status Clear)	2l-15
Query Syntax	2l-15
See Also	21-16
*SRE (Service Request Enable)	21-17
Query Syntax	21-18
See Also	2l-18
STATus:OPERation:CONDition?	21-19
See Also	21-20
STATus:OPERation:ENABle	21-21
Query Syntax	21-22
See Also	21-23
STATus:OPERation[:EVENt]?	21-24
See Also	21-26
STATus:OPERation:NTRansition	21-27
Query Syntax	21-28
See Also	21-29
STATus:OPERation:PTRansition	21-30
Query Syntax	21-31
See Also	21-32
STATus:PRESet	21-33
See Also	21-34
STATus:QUEStionable:CONDition?	21-35
See Also	21-36
STATus:QUEStionable:ENABle	21-37
Query Syntax	21-39
See Also	21-39
See Also	21-40
See Also	21-42
STATus:QUEStionable:NTRansition	21-43
Query Syntax	21-45
See Also	21-45
STATus:QUEStionable:PTRansition	21-46
Query Syntax	21-48
See Also	21-48
*STB? (Read Status Byte Query)	21-49
See Also	21-50

3.	Error Messages	
	Error Messages List	3-3
	Messages	3-5
4.	HP 8673 Compatibility Guide	
	Command Mapping to SCPI	4-3
	Out of Range Personality Difference	4-12
	Rounding Personality Difference	4-12
	Power Suffixes	4-12
	Output Active Parameter	4-13
	System ALC Mode	4-13
	Query Return Format	4-13
	HP 8673 Status Bits	4-15
	Images	4-16
	Event Register Bits	4-17
	Condition Register Bits	4-17
	Source Settled Bit Personality Difference	4-17
	ALC Unleveled and Frequency Error Bits	4-17
	Change in ESB Bit	4-18
	Front Panel Entry Complete Bit	4-18
5.	Legal and Regulatory Information	
	SCPI Conformance	5-3
	Certification	5-11
	Regulatory Information	5-11
	Warranty	5-12
	Limitation of Warranty	5-12
	Exclusive Remedies	5-13
	Assistance	5-14

Index

Figures

1-1.	HP-IB Connector and Cable					1-3
	SCPI Command Types					
1-3.	A Simplified Command Tree					1-22
1-4.	Proper Use of the Colon and Semicolon					1-24
1-5.	Simplified Program Message Syntax					1-30
1-6.	SCPI Simplified Subsystem Command Syntax					1-31
1-7.	Simplified Common Command Syntax					1-32
1-8.	Simplified Response Message Syntax					1-33
2l-1.	Status Register System Hierarchy					21-3
21-2	General Status Group Model					21-4

Tables

1-1.	HP-IB Interface Cables Available	1-4
1-2.	SCPI Data Types	1-34
2c-1.	Synthesizer Options	2c-4
	PRESET Conditions	2d-8
	PRESET Conditions	2d-12
	Synthesizer Key Codes	2g-6
2h-1.	Maximum FM Deviation in Internal FM Mode	2h-24
2h-2.	FM Sensitivity to CW Frequency	2h-35
2h-3.	Maximum Deviation	
	Defined As A Function of PM:INT:FREQ	2h-46
2h-4.	PM Sensitivity to CW Frequency	2h-60
2j-1.	Available Default Suffixes	2j-10
2j-2.	Power Level-Related Suffixes	2j-12
2j-3.	Available Suffix Multipliers	2j-13
2j-4.	Available Default Suffixes	2j-15
2l-1.	Standard Event Status Enable Register Bit Definitions	
21-2.	Service Request Enable Register Bit Definitions	21-1'
	Operation Condition Register Bit Definitions	
21-4.	Operation Event Enable Register Bit Definitions	21-23
21-5.	Operation Event Register Bit Definitions	
21-6.	Operation Negative Transition Register Bit Definitions	
	Operation Positive Transition Register Bit Definitions	
21-8.	Status Register Preset Conditions	
	Questionable Condition Register Bit Definitions	
	Questionable Event Enable Register Bit Definitions	
	Questionable Event Register Bit Definitions	
	Questionable Negative Transition Register Bit Definitions	
	HP 8673 Command Mapping to SCPI Commands	
4-2.	HP 8673 Status and Extended Bytes	4-16
5.1	SCPI Conformance	5-4

Contents

1

Getting Started Programming

Getting Started Programming

HP-IB, the Hewlett-Packard Interface Bus, is the instrument-to-instrument communication system between the synthesizer and up to 14 other instruments. Any instrument having HP-IB capability can be interfaced to the synthesizer, including non-HP instruments that have "GPIB," "IEEE-488," "ANSI MC1.1," or "IEC-625" capability (these are common generic terms for HP-IB; all are electrically equivalent although IEC-625 uses a unique connector). This portion of the manual specifically describes interfacing the synthesizer to a computer.

The first part of this chapter provides general HP-IB information. Later, the Standard Commands for Programmable Instruments language (SCPI) is introduced, and example programs are given.

HP-IB General Information

Interconnecting Cables

The HP-IB connector allows the synthesizer to be connected to any other instrument or device on the interface bus. All HP-IB instruments can be connected with HP-IB cables and adapters. These cables are shown in Figure 1-1. The adapters are principally extension devices for instruments that have recessed or crowded HP-IB connectors.

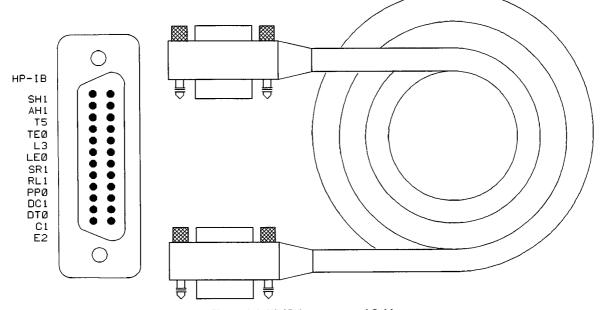


Figure 1-1. HP-IB Connector and Cable

HP-IB General Information

Table 1-1. HP-IB Interface Cables Available

HP-IB Cable Part Numbers	Lengths
HP 10833A	1 m (3.3 ft)
HP 10833B	2 m (6.6 ft)
HP 10833C	4 m (13.2 ft)
HP 10833D	0.5 m (1.6 ft)

As many as 14 HP-IB instruments can be connected to the synthesizer (15 total instruments in the system). The cables can be interconnected in a "star" pattern (one central instrument, with the HP-IB cables emanating from that instrument like spokes on a wheel), or in a linear pattern (like boxcars on a train), or any combination pattern. There are certain restrictions:

- Each instrument must have a unique HP-IB address, ranging from 0 to 30. Refer to "Instrument Addresses" in this chapter for information on setting the synthesizer's HP-IB address.
- In a two-instrument system that uses just one HP-IB cable, the cable length must not exceed 4 meters (13 ft).
- When more than two instruments are connected on the bus, the cable length to each instrument must not exceed 2 meters (6.5 ft) per unit.
- The total cable length between all units must not exceed 20 meters (65 ft).

Hewlett-Packard manufactures HP-IB extender instruments (HP 37201A, HP 37204A/B) that overcome the range limitations imposed by the cabling rules. These extenders allow twin-pair cable operation up to 1 km (3,280 ft), and telephone modem operation over any distance. HP sales and service offices can provide additional information on the HP-IB extenders.

The codes next to the HP-IB connector, illustrated in Figure 1-1, describe the HP-IB electrical capabilities of the synthesizer, using IEEE Std. 488-1978 mnemonics (HP-IB, GPIB, IEEE-488, and IEC-625 are all electrically equivalent). Briefly, the mnemonics translate as follows:

SH1 Source Handshake, complete capability.

AH1 Acceptor Handshake, complete capability.

T5	Talker; capable of basic talker, serial poll, and unaddress if MLA.				
TEO	Talker, Extended address; no capability.				
L3	Listener, capable of basic listener, and unaddress if MTA.				
LE0	Listener, Extended address; no capability.				
SR1	Service Request, complete capability.				
RL1	Remote Local, complete capability.				
PP0	Parallel Poll, no capability.				
DC1	Device Clear, complete capability.				
DT0	Device Trigger, complete capability.				
C0, 1	Controller capability options; C0, no capabilities; C1, system controller.				
E2	Electrical specification indicating open collector outputs.				
These codes are described completely in the IEEE Std 488-1978 document,					

published by the Institute of Electrical and Electronic Engineers, Inc.,

345 East 47th Street, New York, New York 11017.

Instrument Addresses

Each instrument in an HP-IB network must have a unique address, an integer ranging in value from 0 to 30. The default address for the synthesizer is 19, but this can be changed using the SHIFT LOCAL keys.

HP-IB Instrument Nomenclature

An HP-IB instrument is categorized as a "listener," "talker," or "controller," depending on its current function in the network.

A listener is a device capable of receiving data or commands from other

instruments. Any number of instruments in the HP-IB network can be

listeners simultaneously.

Listener

Talker A talker is a device capable of transmitting data or commands to other instruments. To avoid confusion, an HP-IB system allows only one device at a

time to be an active talker.

Controller A controller is an instrument, typically a computer, capable of managing the

various HP-IB activities. Only one device at a time can be an active controller.

Programming the Synthesizer

The synthesizer can be controlled entirely by a computer (although the POWER or LINE switch must be operated manually). Several functions are possible only by computer (remote) control. Computer programming procedures for the synthesizer involve selecting an HP-IB command statement, then adding the specific synthesizer (SCPI, HP 8763) programming codes to that statement to achieve the desired operating conditions.

In the programming explanations that follow, specific examples are included that are written in a generic dialect of the BASIC language. BASIC was selected because the majority of HP-IB computers have BASIC language capability. However, other programming languages can also be used.

HP-IB Command Statements

Command statements form the nucleus of HP-IB programming; they are understood by all instruments in the network and, when combined with the programming language codes, they provide all management and data communication instructions for the system.

An explanation of the eight fundamental command statements follows. However, some computers use a slightly different terminology, or support an extended or enhanced version of these commands. Consider the following explanations as a starting point, but for detailed information consult the BASIC language reference manual, the I/O programming guide, and the HP-IB manual for the particular computer used.

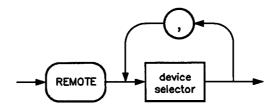
Syntax drawings accompany each statement: All items enclosed by a circle or oval are computer specific terms that must be entered exactly as described; items enclosed in a rectangular box are names of parameters used in the statement; and the arrows indicate a path that generates a valid combination of statement elements.

Abort

Abort abruptly terminates all listener/talker activity on the interface bus, and prepares all instruments to receive a new command from the controller. Typically, this is an initialization command used to place the bus in a known starting condition. The syntax is:

where the interface select code is the computer's HP-IB I/O port, which is typically port 7. Some BASIC examples:

10 ABORT 7


100 IF V>20 THEN ABORT 7

Related statements used by some computers

- ABORTIO (used by HP-80 series computers)
- HALT
- RESET

Remote

Remote causes an instrument to change from local control to remote control. In remote control, the front panel keys are disabled (except for the LOCAL) key and the POWER or LINE switch), and the REMOTE annunciator is lit. The syntax is:

where the device selector is the address of the instrument appended to the HP-IB port number. Typically, the HP-IB port number is 7, and the default address for the synthesizer is 19, so the device selector is 719.

Some BASIC examples

10 REMOTE 7

which prepares all HP-IB instruments for remote operation (although nothing appears to happen to the instruments until they are addressed to talk), or

10 REMOTE 719

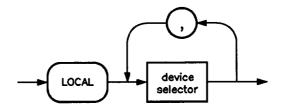
which affects the HP-IB instrument located at address 19, or

10 REMOTE 719, 721, 726, 715

which effects four instruments that have addresses 19, 21, 26, and 15.

Local Lockout

LOCAL LOCKOUT can be used in conjunction with REMOTE to disable the front panel LOCAL key. With the LOCAL key disabled, only the controller (or a hard reset by the POWER switch) can restore local control. The syntax is:



A BASIC example

- 10 REMOTE 719
- 20 LOCAL LOCKOUT 7

Local

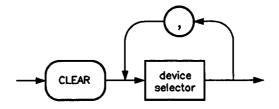
LOCAL is the complement to REMOTE, causing an instrument to return to local control with a fully enabled front panel. The syntax is:

Some BASIC examples

10 LOCAL 7

which effects all instruments in the network, or

10 LOCAL 719


for an addressed instrument (address 19).

Clear

CLEAR causes all HP-IB instruments, or addressed instruments, to assume a "cleared" condition, with the definition of "cleared" being unique for each device. For the synthesizer:

- 1. All pending output-parameter operations are halted.
- 2. The parser (the software that interprets the programming codes) is reset, and now expects to receive the first character of a programming code.

The syntax is:

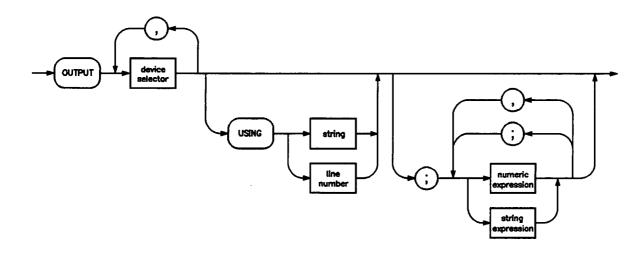
Some BASIC examples

10 CLEAR 7

to clear all HP-IB instruments, or

10 CLEAR 719

to clear an addressed instrument.


Related statements used by some computers

- RESET
- CONTROL
- SEND

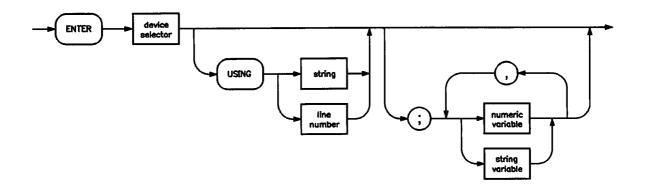
The preceding statements are primarily management commands that do not incorporate programming codes. The following two statements do incorporate programming codes, and are used for data communication.

Output

OUTPUT is used to send function commands and data commands from the controller to the addressed instrument. The syntax is:

where USING is a secondary command that formats the output in a particular way, such as a binary or ASCII representation of numbers. The USING command is followed by "image items" that precisely define the format of the output; these image items can be a string of code characters, or a reference to a statement line in the computer program. Image items are explained in the programming codes where they are needed. Notice that this syntax is virtually identical to the syntax for the ENTER statement that follows.

A BASIC example


100 OUTPUT 719; "programming codes"

Related statements used by some computers

- CONTROL
- CONVERT
- IMAGE
- IOBUFFER
- TRANSFER

Enter

ENTER is the complement of OUTPUT, and is used to transfer data from the addressed instrument to the controller. The syntax is:

ENTER is always used in conjunction with OUTPUT, such as:

100 OUTPUT 719; "... programming codes ... "

110 ENTER 719; "... response data..."

ENTER statements are commonly formatted, which requires the secondary command USING and the appropriate image items. The most-used image items involve end-of-line (end or identify) suppression, binary inputs, and literal inputs.

Example

100 ENTER 719 USING "#, B"; A, B, C

suppresses the EOI sequence (#), and indicates that variables A, B, and C are to be filled with binary (B) data. As another example,

100 ENTER 719 USING "#, 123A"; A\$

suppresses EOI, and indicates that string variable A\$ is to be filled with 123 bytes of literal data (123A).

HP-IB General Information

NOTE

Be careful when using byte-counting image specifiers. If the requested number of bytes does not match the actual number available, data might be lost, or the program might enter an endless wait state.

The suppression of the EOI sequence is frequently necessary to prevent a premature termination of the data input. When not specified, the typical EOI termination occurs when an ASCII LF (line feed) is received. However, the LF bit pattern could coincidentally occur randomly in a long string of binary data, where it might cause a false termination. Also, the bit patterns for the ASCII CR (carriage return), comma, or semicolon might cause a false termination. Suppression of the EOI causes the computer to accept all bit patterns as data, not commands, and relies on the HP-IB EOI (end or identify) line for correct end-of-data termination.

Related statements used by some computers

- CONVERT
- IMAGE
- IOBUFFER
- ON TIMEOUT
- SET TIMEOUT
- TRANSFER

This completes the "HP-IB Command Statements" subsection. The following material explains the SCPI programming codes, and shows how they are used with the OUTPUT and ENTER HP-IB command statements.

Getting Started with SCPI

This section of Chapter 1 describes the use of the Standard Commands for Programmable Instruments language (SCPI). This section explains how to use SCPI commands in general. This section presents only the basics of SCPI. If you want to explore the topic in greater depth, see the paragraph titled, "Related Documents."

Definitions of Terms

You need a general understanding of the terms listed below before you continue.

controller A controller is any computer used to communicate with a

SCPI instrument. A controller can be a personal computer, a minicomputer, or a plug-in card in a card cage. Some intelligent instruments can also function as controllers.

instrument An instrument is any device that implements SCPI. Most

instruments are electronic measurement or stimulus devices, but this is not a requirement. Similarly, most instruments use an HP-IB interface for communication. The same concepts apply regardless of the instrument function or the

type of interface used.

program A program message is a combination of one or more message properly formatted SCPI commands. Program message

properly formatted SCPI commands. Program messages always go from a controller to an instrument. Program messages tell the instrument how to make measurements

and output signals.

response A response message is a collection of data in specific SCPI message formats. Response messages always go from an instrument

formats. Response messages always go from an instrument to a controller or listening instrument. Response messages tell the controller about the internal state of the instrument

and about measured values.

command A command is an instruction in SCPI. You combine

commands to form messages that control instruments. In general, a command consists of mnemonics (keywords),

parameters, and punctuation.

query A query is a special type of command. Queries instruct the

instrument to make response data available to the controller.

Query mnemonics always end with a question mark.

Standard Notation

This section uses several forms of notation that have specific meaning.

Command Mnemonics

Many commands have both a long and a short form, and you must use either one or the other (SCPI does not accept a combination of the two). Consider the FREQuency command, for example. The short form is FREQ and the long form is FREQUENCY (this notation style is a shorthand to document both the long and short form of commands). SCPI is not case sensitive, so fREQUENCY is just as valid as FREQUENCY, but FREQ and FREQUENCY are the only valid forms of the FREQuency command.

Angle Brackets

Angle brackets indicate that the word or words enclosed represent something other than themselves. For example, <new line> represents the ASCII character with the decimal value 10. Similarly, <^END> means that EOI is asserted on the HP-IB interface. Words in angle brackets have much more rigidly defined meaning than words used in ordinary text. For example, this section uses the word "message" to talk about messages generally. But the bracketed words rogram message> indicate a precisely defined element of SCPI. If you need them, you can find the exact definitions of words such as rogram message> in a syntax diagram.

How to Use Examples

It is important to understand that programming with SCPI actually requires knowledge of two languages. You must know the programming language of your controller (BASIC, C, Pascal) as well as the language of your instrument (SCPI). The semantic requirements of your controller's language determine how the SCPI commands and responses are handled in your application.

Definitions of Terms

Command Examples

Command examples look like this:

:FREQuency:CW?

This example tells you to put the string :FREQuency:CW? in the output statement appropriate to your application programming language. If you encounter problems, study the details of how the output statement handles message terminators such as <new line>. If you are using simple OUTPUT statements in HP BASIC, this is taken care of for you. In HP BASIC, you type:

OUTPUT 719;":FREQuency:CW?"

Command examples do not show message terminators because they are used at the end of every program message. "Details of Commands and Responses," discusses message terminators in more detail.

Response Examples

Response examples look like this:

3.0000000000E+009

These are the characters you would read from an instrument after sending a query command. To actually pull them from the instrument into the controller, use the input statement appropriate to your application programming language. If you have problems, study the details of how the input statement operates. In particular, investigate how the input statement handles punctuation characters such as comma and semicolon, and how it handles <new line> and EOI. To enter the previous response in HP BASIC, you type:

ENTER 719; CW_frequency

Response examples do not show response message terminators because they are always <new line> <^END>. These terminators are typically automatically handled by the input statement. The paragraph titled "Details of Commands and Responses," later in this chapter, discusses message terminators in more detail.

Essentials for Beginners

This section discusses elementary concepts critical to first-time users of SCPI. Read and understand this section before continuing. This section includes the following topics:

Program and Response

Messages

These paragraphs introduce the basic types of messages sent between instruments and

controllers.

Subsystem Command Trees These paragraphs describe the tree structure

used in subsystem commands.

Reading Instrument Errors These paragraphs explain how to read

and print an instrument's internal error

messages.

Example Programs These paragraphs contain two simple

measurement programs that illustrate basic

SCPI programming principles.

Program and Response Messages

To understand how your instrument and controller communicate using SCPI, you must understand the concepts of program and response messages. *Program messages* are the formatted data sent from the controller to the instrument. Conversely, *response messages* are the formatted data sent from the instrument to the controller. Program messages contain one or more commands, and response messages contain one or more responses.

The controller may send commands at any time, but the instrument sends responses only when specifically instructed to do so. The special type of command used to instruct the instrument to send a response message is the *query*. All query mnemonics end with a question mark. Queries return either measured values or internal instrument settings. Any internal setting that can be programmed with SCPI can also be queried.

Forgiving Listening and Precise Talking

SCPI uses the concept of forgiving listening and precise talking outlined in IEEE 488.2.

Forgiving listening means that instruments are very flexible in accepting various command and parameter formats. For example, the synthesizer accepts either: POWer:STATe ON or: POWer: STATe 1 to turn RF output on.

Precise talking means that the response format for a particular query is always the same. For example, if you query the power state when it is on (using :POWer:STATe?), the response is always 1, regardless of whether you previously sent :POWer:STATe 1 or :POWer:STATe ON.

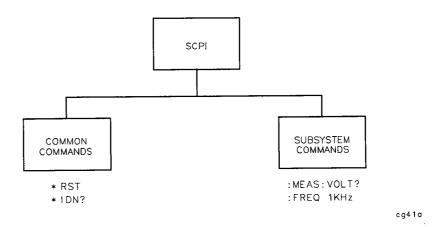
Types of Commands

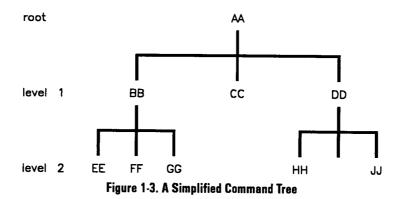
Commands can be separated into two groups, common commands and subsystem commands.

Common commands are generally not measurement related. They are used to manage macros, status registers, synchronization, and data storage. Common commands are easy to recognize because they all begin with an asterisk, such as *IDN?, *OPC, and *RST. Common commands are defined by IEEE 488.2.

Subsystem commands include all measurement functions and some general purpose functions. Subsystem commands are distinguished by the colon used between keywords, as in :FREQuency:CW?. Each command subsystem is a

set of commands that roughly corresponds to a functional block inside the instrument. For example, the POWer subsystem contains commands for power generation, while the STATus subsystem contains commands for accessing status registers.




Figure 1-2. SCPI Command Types

The remaining paragraphs in this subsection discuss subsystem commands in more detail. Remember, some commands are implemented in one instrument and not in another, depending on its measurement function.

Subsystem Command Trees

The Command Tree Structure

Most programming tasks involve subsystem commands. SCPI uses a hierarchical structure for subsystem commands similar to the file systems on most computers. In SCPI, this command structure is called a *command tree*.

In the command tree shown in Figure 1-3, the command closest to the top is the *root command*, or simply the *root*. Notice that you must follow a particular *path* to reach lower level subcommands. For example, if you wish to access the **GG** command, you must follow the path **AA** to **BB** to **GG**.

Paths Through the Command Tree To access commands in different paths in the command tree, you must understand how an instrument interprets commands. A special part of the instrument firmware, a *parser*, decodes each message sent to the instrument. The parser breaks up the message into component commands using a set of rules to determine the command tree path used. The parser keeps track of the *current path*, the level in the command tree where it expects to find the next command you send. This is important because the same keyword may appear in different paths. The particular path you use determines how the keyword is interpreted. The following rules are used by the parser:

• Power On and Reset

After power is cycled or after *RST, the current path is set to the root.

• Message Terminators

A message terminator, such as a <new line> character, sets the current path to the root. Many programming languages have output statements that send message terminators automatically. The paragraph titled, "Details of Commands and Responses," later in this chapter, discusses message terminators in more detail.

Colon

When it is between two command mnemonics, a colon moves the current path down one level in the command tree. For example, the colon in MEAS: VOLT specifies that VOLT is one level below MEAS. When the colon is the first character of a command, it specifies that the next command mnemonic is a root level command. For example, the colon in :INIT specifies that INIT is a root level command.

• Semicolon

A semicolon separates two commands in the same message without changing the current path.

• Whitespace

Whitespace characters, such as <tab> and <space>, are generally ignored. There are two important exceptions. Whitespace inside a keyword, such as :FREQ uency, is not allowed. You must use white space to separate parameters from commands. For example, the <space> between LEVel and 6.2 in the command :POWer:LEVel 6.2 is mandatory. Whitespace does not affect the current path.

Commas

If a command requires more than one parameter, you must separate adjacent parameters using a comma. Commas do not affect the current path.

• Common Commands

Common commands, such as *RST, are not part of any subsystem. An instrument interprets them in the same way, regardless of the current path setting.

Essentials for Beginners

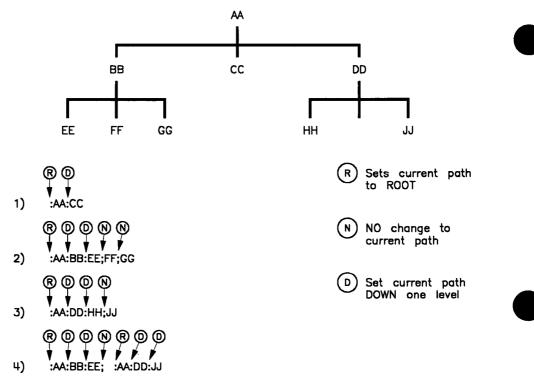


Figure 1-4. Proper Use of the Colon and Semicolon

Figure 1-4 shows examples of how to use the colon and semicolon to navigate efficiently through the command tree. Notice how proper use of the semicolon can save typing.

Sending this message:

:AA:BB:EE; FF; GG

Is the same as sending these three messages:

:AA:BB:EE

:AA:BB:FF

:AA:BB:GG

More About Commands

Query and Event Commands You can query any value that you can set. For example, the presence of the synthesizer FREQuency:STEP command implies that a FREQuency:STEP? also exists. If you see a command ending with a question mark, it is a *query* only command. Some commands are *events*, and cannot be queried. An event has no corresponding setting if it causes something to happen inside the instrument at a particular instant.

Implied Commands

Implied commands appear in square brackets. If you send a subcommand immediately preceding an implied command, but do not send the implied command, the instrument assumes you intend to use the implied command, and behaves just as if you had sent it. Note that this means the instrument expects you to include any parameters required by the implied command. The following example illustrates equivalent ways to program the synthesizer using explicit and implied commands.

Example synthesizer commands with and without an implied command:

FREQuency: STEP: INCRement 1 using explicit commands
FREQuency: STEP 1 using implied commands

Optional Parameters

Optional parameter names are enclosed in square brackets. If you do not send a value for an optional parameter, the instrument chooses a default value. The instrument's command dictionary documents the values used for optional parameters.

Program Message Examples

The following parts of the synthesizer SCPI command set will be used to demonstrate how to create complete SCPI program messages:

:FREQuency
[:CW]
:STEP
:POWER
[:LEVel]

Example 1

"FREQuency: CW 5 GHZ; STEP 2 GHZ"

The command is correct and will not cause errors. It is equivalent to sending:

"FREQuency:CW 5 GHZ; :FREQuency:STEP 2 GHZ".

Example 2

"FREQuency 5 GHZ; :STEP 2 GHZ"

This command results in a command error. The command makes use of the default [:CW] node. When using a default node, there is no change to the current path position. Since there is no command "STEP" at the root, an error results. A correct way to send this is:

"FREQ 5 GHZ; FREQ:STEP 2 GHZ"

or as in example 1.

Example 3

"FREQuency:STEP 1 GHZ; FREQuency:CW 5 GHZ"

This command results in a command error. The FREQ:CW portion of the command is missing a leading colon. The path level is dropped at each colon until it is in the FREQ:STEP subsystem.

So when the FREQ:CW command is sent, it causes confusion because no such node occurs in the FREQ:STEP subsystem. By adding a leading colon, the current path is reset to the root. The corrected command is:

"FREQuency:STEP 1 GHZ; :FREQuency:CW 5 GHZ".

Example 4

"FREQ 5 GHZ; POWER 4 DBM"

Notice that in this example the keyword short form is used. The command is correct. It utilizes the default nodes of [:CW] and [:LEVEL]. Since default nodes do not affect the current path, it is not necessary to use a leading colon before POWER.

Reading Instrument Errors

When debugging a program, you may want to know if an instrument error has occurred. Some instruments can display error messages on their front panels. If your instrument cannot do this, you can put the following code segment in your program to read and display error messages.

```
10 !
 20 ! The rest of your
 30 ! variable declarations
 40! Assign @box to 719
 50 DIM Err_msg$[75]
 60 INTEGER Err_num
 70 !
 80 ! Part of your program
 90 ! that generates errors
100 !
110 !
200 REPEAT
210
      OUTPUT @Box;":SYST:ERR?"
220
      ! Query instrument error
230
      ENTER @Box;Err_num,Err_msg$
240
      ! Read error #, message
250
      PRINT Err_num, Err_msg$
260
      ! Print error message
270 UNTIL Err_num = 0
280 ! Repeat until no errors
290 !
300 !
       The rest of your program
310 !
```

Details of Commands and Responses

This section describes the syntax of SCPI commands and responses. It provides many examples of the data types used for command parameters and response data. The following topics are explained:

Program Message

Syntax

These paragraphs explain how to properly construct

the messages you send from the computer to

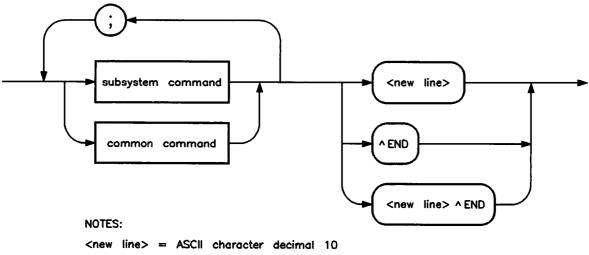
instruments.

Response Message

Syntax

These paragraphs discuss the format of messages sent

from instruments to the computer.

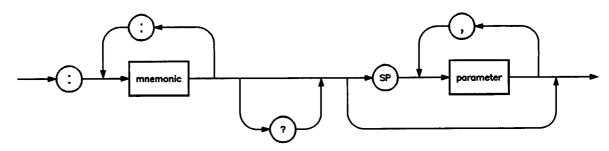

SCPI Data Types

These paragraphs explain the types of data contained

in program and response messages.

Program Message Syntax

These program messages contain commands combined with appropriate punctuation and program message terminators.

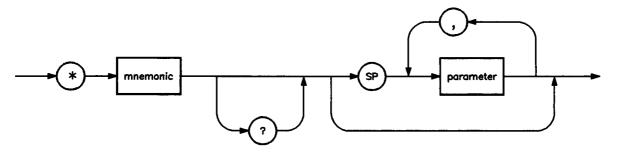


^END = EOI asserted concurrent with last byte

Figure 1-5. Simplified Program Message Syntax

As Figure 1-5 shows, you can send common commands and subsystem commands in the same message. If you send more than one command in the same message, you must separate them with a semicolon. You must always end a program message with one of the three program message terminators shown in Figure 1-5. Use <new line>, <^END>, or <new line> <^END> as the program message terminator. The word < END> means that EOI is asserted on the HP-IB interface at the same time the preceding data byte is sent. Most programming languages send these terminators automatically. For example, if you use the HP BASIC OUTPUT statement, <new line> is automatically sent after your last data byte. If you are using a PC, you can usually configure the system to send whatever terminator you specify.

SCPI Subsystem Command Syntax


NOTE:

SP = white space, ASCII characters $\mathbf{0}_{10}$ to $\mathbf{9}_{10}$ and $\mathbf{11}_{10}$ to $\mathbf{32}_{10}$

Figure 1-6. SCPI Simplified Subsystem Command Syntax

As Figure 1-6 shows, there must be a **<space>** between the last command mnemonic and the first parameter in a subsystem command. This is one of the few places in SCPI where **<space>** is required. Note that if you send more than one parameter with a single command, you must separate adjacent parameters with a comma. Parameter types are explained later in this subsection.

Common Command Syntax

NOTE:

SP = white space, ASCII characters 0 $_{10}$ to 9 $_{10}$ and 11 $_{10}$ to 32 $_{10}$

Figure 1-7. Simplified Common Command Syntax

As with subsystem commands, use a **<space>** to separate a command mnemonic from subsequent parameters. Separate adjacent parameters with a comma. Parameter types are explained later in this subsection.

Response Message Syntax

Figure 1-8. Simplified Response Message Syntax

Response messages can contain both commas and semicolons as separators. When a single query command returns multiple values, a comma separates each data item. When multiple queries are sent in the same message, the groups of data items corresponding to each query are separated by a semicolon. For example, the fictitious query :QUERY1?:QUERY2? might return a response message of:

<data1>,<data1>;<data2>,<data2>

Response data types are explained later in this subsection. Note that <new line><^END> is always sent as a response message terminator.

SCPI Data Types

These paragraphs explain the data types available for parameters and response data. They list the types available and present examples for each type. SCPI defines different data formats for use in program messages and response messages. It does this to accommodate the principle of forgiving listening and precise talking. Recall that forgiving listening means instruments are flexible, accepting commands and parameters in various formats. Precise talking means an instrument always responds to a particular query in a predefined, rigid format. Parameter data types are designed to be flexible in the spirit of forgiving listening. Conversely, response data types are defined to meet the requirements of precise talking.

Table 1-2. SCPI Data Types

Parameter Types	Response Data Types
Numeric	Real or Integer
Extended Numeric	Integer
Discrete	Discrete
Boolean	Numeric Boolean
String	String
Block	Definite Length Block
	Indefinite Length Block
Non-decimal Numeric	Hexadecimal
	Octal
	Binary

Notice that each parameter type has one or more corresponding response data types. For example, a setting that you program using a numeric parameter returns either real or integer response data when queried. Whether real or integer response data is returned depends on the instrument used. However, precise talking requires that the response data type be clearly defined for a particular instrument and query. The instrument command

dictionary in Chapter 2 generally contains information about data types for individual commands. The following paragraphs explain each parameter and response data type in more detail.

Parameter Types

Numeric Parameters

Numeric parameters are used in both subsystem commands and common commands. Numeric parameters accept all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation.

If an instrument setting programmed with a numeric parameter can only assume a finite number of values, the instrument automatically rounds the parameter. For example, if an instrument has a programmable output impedance of 50 or 75 ohms, and you specified 76.1 for output impedance, the value is rounded to 75. If the instrument setting can only assume integer values, it automatically rounds the value to an integer. For example, sending *ESE 10.123 is the same as sending *ESE 10.

Examples of numeric parameters:

100	no decimal point required
100.	fractional digits optional
-1.23	$leading\ signs\ allowed$
4.56e <space>3</space>	space allowed after e in exponentials
-7.89E-01	use either E or e in exponentials
+256	leading + allowed
.5	digits left of decimal point optional

Details of Commands and Responses

Extended Numeric Parameters

Most subsystems use *extended numeric* parameters to specify physical quantities. Extended numeric parameters accept all numeric parameter values and other special values as well. All extended numeric parameters accept MAXimum and MINimum as values. Other special values, such as UP and DOWN may be available as documented in Chapter 2. Note that MINimum and MAXimum can be used to set or query values. The query forms are useful for determining the range of values allowed for a given parameter.

In some instruments, extended numeric parameters accept engineering unit suffixes as part of the parameter value.

Note that extended numeric parameters are not used for common commands or STATus subsystem commands.

Examples of extended numeric parameters:

100. any simple numeric values
-1.23 largest valid setting
4.56e<space>3
-7.89E-01
+256
.5

MAX
MIN valid setting nearest negative infinity
-100 mV negative 100 millivolts

Discrete Parameters

Use *discrete parameters* to program settings that have a finite number of values. Discrete parameters use mnemonics to represent each valid setting. They have a long and a short form, just like command mnemonics. You can used mixed upper and lower case letters for discrete parameters.

Examples of discrete parameters used with the ALC:SOURce subsystem:

INTernal internal leveling
DIODe external diode detector leveling

Although discrete parameters values look like command keywords, do not confuse the two. In particular, be sure to use colons and spaces properly. Use a colon to separate command mnemonics from each other. Use a space to separate parameters from command mnemonics.

Examples of discrete parameters in commands:

```
100 OUTPUT @Source; "POWer: ALC: SOURce INT"
100 OUTPUT @Source; "POWer: ALC: SOURce DIODe"
```

Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. There are only four possible values for a Boolean parameter.

Examples of Boolean parameters:

- ON Boolean TRUE, upper/lower case allowed
- OFF Boolean FALSE, upper/lower case allowed
- 1 Boolean TRUE
- 0 Boolean FALSE

Response Data Types

Real Response Data

A large portion of all measurement data are formatted as *real* response data. Real response data are decimal numbers in either fixed decimal notation or scientific notation. In general, you do not need to worry about the rules for formatting real data, or whether fixed decimal or scientific notation is used. Most high level programming languages that support instrument I/O handle either type transparently.

Examples of real response data:

- 1.23E+0
- -1.0E+2
- +1.0E+2
- 0.5E+0
- 1.23
- -100.0
- +100.0
 - 0.5

Integer Response Data

Integer response data are decimal representations of integer values including optional signs. Most status register related queries return integer response data.

Examples of integer response data:

- 0 signs are optional
- +100 leading + sign allowed
- -100 leading sign allowed
- 256 never any decimal point

Discrete Response Data

Discrete response data are similar to discrete parameters. The main difference is that discrete response data return only the short form of a particular mnemonic, in all upper case letters.

Examples of discrete response data:

INTernal level internally

DIODe level using an external diode

String Response Data

String response data are similar to string parameters. The main difference is that string response data use only double quotes as delimiters, rather than single quotes. Embedded double quotes may be present in string response data. Embedded quotes appear as two adjacent double quotes with no characters between them.

Examples of string response data:

"This IS valid"
"SO IS THIS "" "
"I said, ""Hello!"""

Programming Typical Measurements

This section illustrates how the general SCPI concepts presented in previous sections apply to programming real measurements. To introduce you to programming with SCPI, we must list the commands for the synthesizer. We will begin with a simplified example.

Using the Example Programs

The example programs are interactive. They require active participation by the operator. If you desire to get an understanding of the principles without following all of the instructions, read the "Program Comments" paragraphs to follow the programmed activity.

The HP-IB select code is assumed to be preset to 7. All example programs in this section expect the synthesizer's HP-IB address to be decimal 19.

To find the present HP-IB address use the front panel.

The active entry area indicates the present decimal address. If the number displayed is not 19, press 19 ENTER to reset it to 19.

Now check that the interface language is set to SCPI. Press SPECIAL 15 ENTER. The selected interface language is then shown, use the up and down keys to change the language.

HP-IB Check, Example Program 1

This first program is to verify that the HP-IB connections and interface are functional. Connect a controller to the synthesizer via an HP-IB cable. Clear and reset the controller and type in the following program:

- 10 Synthesizer =719
- 20 ABORT 7
- 30 LOCAL Synthesizer
- 40 CLEAR Synthesizer
- 50 REMOTE Synthesizer
- 60 CLS
- 70 PRINT "The synthesizer should now be in REMOTE."
- 80 PRINT "Verify that the 'RMT' annunciator is on."
- 90 END

Run the program and verify that the RMT annunciator is lit on the synthesizer. If it is not, verify that the synthesizer address is set to 19 and that the interface cable is properly connected.

If the controller display indicates an error message, it is possible that the program was entered in incorrectly. If the controller accepts the REMOTE statement but the synthesizer RMT annunciator does not turn on, refer to the service guide to find the trouble shooting information.

Program Comments

- 10: Set up a variable to contain the HP-IB address of the source.
- 20: Abort any bus activity and return the HP-IB interfaces to their reset states.
- 30: Place the synthesizer into LOCAL to cancel any local lockouts that may have been setup.
- 40: Reset the synthesizer's parser and clear any pending output from the source. Prepare the synthesizer to receive new commands.
- 50: Place the synthesizer into REMOTE.
- 60: Clear the display of the computer.
- 70: Print a message to the computer's display.

Local Lockout Demonstration, Example Program 2

When the synthesizer is in REMOTE mode, all the front panel keys are disabled except the LOCAL key. But, when the LOCAL LOCKOUT command is set on the bus, even the LOCAL key is disabled. The LOCAL command, executed from the controller, is then the only way to return all (or selected) instruments to front panel control.

Continue example program 1. Delete line 90 END and type in the following commands:

```
90
     PRINT "Verify that all keys are ignored,
             except the 'LOCAL' key."
    PRINT "Verify that 'LOCAL' causes the
             RMT annunciator to go OFF."
110 PRINT " ..... press CONTINUE"
120 PAUSE
130 REMOTE Synthesizer
140 LOCAL LOCKOUT 7
150 PRINT
160 PRINT "Synthesizer should now be in LOCAL LOCKOUT mode."
    PRINT "Verify that all keys (including 'LOCAL')
             have no effect."
180
    PRINT " ..... press CONTINUE"
190 PAUSE
200 LOCAL Synthesizer
210 PRINT
220
    PRINT "Synthesizer should now be in LOCAL mode."
    PRINT "Verify that the synthesizer's keyboard
             is functional."
240
    END
```

Program Comments

90 to 120: Print a message on the computer's display, then pause.

130: Place the synthesizer into REMOTE.

140: Place the synthesizer into LOCAL LOCKOUT mode.

Getting Started Programming Programming Typical Measurements

150 to 190: Print a message on the computer's display, then pause.

200: Return the synthesizer to local control.

210 to 230: Print a message on the computer's display.

Programming Typical Measurements

Internally Leveled CW Signal, Example Program 3

In the following example, an internally leveled, CW signal is generated at a frequency of 2.000203 GHz with a power level of -2.1 dBm. Clear and reset the controller and type in the following program:

```
10
     Synthesizer=719
20
     ABORT 7
30
     LOCAL 7
40
     CLEAR Synthesizer
     REMOTE Synthesizer
50
60
     OUTPUT Synthesizer; "*RST"
     OUTPUT Synthesizer; "POW: ALC: SOUR INT"
70
80
     OUTPUT Synthesizer; "FREQuency 2.000203GHZ"
90
     OUTPUT Synthesizer; "POWer:LEVel -2.1 DBM"
100 OUTPUT Synthesizer; "OUTP:STATe ON"
110 END
```

Run the program.

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Enable internal leveling.
80: Set the frequency to 2.000203 GHz.

90: Set the synthesizer's power level to -2.1 dBm.

100: Turn the RF output on.

Internally Leveled AC-Coupled External FM Signal, Example Program 4

In the following example, an internally leveled, AC-coupled FM signal will be generated at a carrier frequency of 12.5 GHz with a power level of -3 dBm. In order to accomplish this, connect the output of a modulating signal source to the synthesizer's FM IN, set the modulating signal source for the desired FM characteristics, and then run the following program.

```
10
    Synthesizer=719
    ABORT 7
20
30
    LOCAL 7
    CLEAR Synthesizer
40
    REMOTE Synthesizer
50
60
     OUTPUT Synthesizer; "*RST"
     OUTPUT Synthesizer; "FM:COUP AC"
70
80
     OUTPUT Synthesizer; "FM:STAT ON"
     OUTPUT Synthesizer; "POW:ALC:SOUR INT"
90
100 OUTPUT Synthesizer; "FREQ 12.5GHZ"
110 OUTPUT Synthesizer; "POW:LEV -3DBM"
120 OUTPUT Synthesizer; "OUTP:STAT ON"
130 END
```

Program Con	nments
-------------	--------

10:	Assign the synthesizer's HP-IB address to a variable.
20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.
60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70:	Set FM coupling to AC.
80:	Turn frequency modulation on.
90:	Enable internal leveling.
100:	Set the carrier frequency to 12.5 GHz.
110:	Set the output power level to -3 dBm.
120:	Turn the RF output on.

Internally Leveled AC-Coupled Internal FM Signal, Example Program 5

NOTE

Internal FM source is only available with Option 1E2 installed.

In the following example, an internally leveled, AC-coupled internal FM signal will be generated at a carrier frequency of 12.5 GHz with a power level of -3 dBm. The FM rate will be 5 kHz and the peak deviation will be 100 kHz. In order to accomplish this, run the following program.

10 Synthesizer=719 20 ABORT 7 30 LOCAL 7 40 CLEAR Synthesizer 50 REMOTE Synthesizer 60 OUTPUT Synthesizer; "*RST" 70 OUTPUT Synthesizer; "FM:COUP AC" 80 OUTPUT Synthesizer; "FM:SOUR INT" 90 OUTPUT Synthesizer; "FM:INT:FREQ 5KHZ" 100 OUTPUT Synthesizer; "FM:DEV 100KHZ" 110 OUTPUT Synthesizer; "FM:STAT ON" 120 OUTPUT Synthesizer; "POW:ALC:SOUR INT" 130 OUTPUT Synthesizer; "FREQ 12.5GHZ" 140 OUTPUT Synthesizer; "POW:LEV -3DBM" 150 OUTPUT Synthesizer; "OUTP:STAT ON" 160 END

Program Comments	10:	Assign the synthesizer's HP-IB address to a variable.
	20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.
	60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
	70:	Set FM coupling to AC.
	80:	Set the FM source to internal.
	90:	Set the internal FM rate to 5 kHz.
	100:	Set the internal FM deviation to 100 kHz.
	110:	Turn frequency modulation on.
	120:	Enable internal leveling.
	130:	Set the carrier frequency to 12.5 GHz.
	140:	Set the output power level to -3 dBm.
	150:	Turn the RF output on.

Programming Typical Measurements

Power Sweep Routine, Example Program 6

In the following example, a power sweep will be generated at a carrier frequency of 2.3 GHz. The power will sweep from a minimum level of -30 dBm to a maximum level of 0 dBm.

To program the synthesizer to generate the power sweep explained above, connect the output of a function generator to the synthesizer's AM IN. Set the function generator to generate a negative sawtooth waveform from +3 V to 0 V and then run the following program.

```
10
     Synthesizer=719
20
     ABORT 7
    LOCAL 7
30
40
     CLEAR Synthesizer
50
    REMOTE Synthesizer
     OUTPUT Synthesizer; "*RST"
60
70
     OUTPUT Synthesizer; "AM:STAT ON"
80
     OUTPUT Synthesizer; "POW:ALC:SOUR INT"
     OUTPUT Synthesizer; "FREQ 2.3GHZ"
90
100 OUTPUT Synthesizer; "POW:LEV ODBM"
110 OUTPUT Synthesizer; "OUTP:STAT ON"
120 END
```

Program Comments

10:	Assign the synthesizer's HP-IB address to a variable.
20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.
60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
7 0:	Turn logarithmic amplitude modulation on.
80:	Enable internal leveling.
90:	Set the carrier frequency to 2.3 GHz.
100:	Set the output power level to 0 dBm (the maximum level needed in the power sweep).
110:	Turn the RF output on.

Generating Repetitive, Internal Pulse Modulation, Example Program 7

In the following example, an internally leveled, internally pulse modulated signal will be generated at a carrier frequency of 3.085 GHz with a power level of 0 dBm. The pulses will have a pulse repetition interval of 100 ms with a 25 ms pulse width and a 200 μ s delay.

```
10
     Synthesizer=719
20
     ABORT 7
     LOCAL 7
30
40
     CLEAR Synthesizer
50
     REMOTE Synthesizer
     OUTPUT Synthesizer; "*RST"
60
     OUTPUT Synthesizer; "PULM:SOUR INT"
70
80
     OUTPUT Synthesizer; "TRIG:SOUR IMM"
90
     OUTPUT Synthesizer; "PULM:STAT ON"
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 3.085GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
140 OUTPUT Synthesizer; "PULS:PER 100MS"
150 OUTPUT Synthesizer; "PULS:WIDT 25MS"
160 OUTPUT Synthesizer; "PULS:DEL 200US"
170 OUTPUT Synthesizer; "OUTP:STAT ON"
180 END
```

Program Comments

10:	Assign the synthesizer's HP-IB address to a variable.
20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.
60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70:	Set pulse source to internal.
80:	Set pulse trigger source to immediate (non-triggered).
90:	Turn pulse modulation on.
100:	Enable internal leveling.

Getting Started Programming

Programming Typical Measurements

110:	Set the carrier frequency to 3.085 GHz.
120:	Set the output power level to 0 dBm.
130:	Turn average power inhibit on or off.
140:	Set the pulse repetition interval to 100 ms.
150:	Set the pulse width to 25 ms.
160:	Set the pulse delay to 200 μ s.
170:	Turn the RF output on.

Generating Externally-Triggered Pulse Modulation, Example Program 8

In the following example, an internally-leveled, externally-triggered pulse-modulated signal will be generated at a carrier frequency of 5 GHz with a power level of -3 dBm. The pulses will have a 23 ms pulse width and a 100 μ s delay.

To program the synthesizer to generate the signal explained above, connect the output of a trigger signal source to the PULSE/TRIG GATE IN, set the trigger signal source for the desired triggering characteristics, and then run the following program.

```
10
    Synthesizer=719
20
    ABORT 7
30
    LOCAL 7
    CLEAR Synthesizer
40
50
    REMOTE Synthesizer
60
    OUTPUT Synthesizer; "*RST"
     OUTPUT Synthesizer; "PULM:SOUR INT"
70
     OUTPUT Synthesizer; "TRIG:SOUR EXT"
80
     OUTPUT Synthesizer; "PULM:STAT ON"
90
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 5GHZ"
120 OUTPUT Synthesizer; "POW:LEV -3DBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
140 OUTPUT Synthesizer; "PULS:WIDT 23MS"
150 OUTPUT Synthesizer; "PULS:DEL 100US"
160 OUTPUT Synthesizer; "OUTP:STAT ON"
170 END
```

Program Comments

10:	Assign the synthesizer's HP-IB address to a variable.
10:	Assign the synthesizer's in in address to a variable.
20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.
60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70:	Set pulse source to internal.
80:	Enable triggered pulse mode.

90:	Turn pulse modulation on.
100:	Enable internal leveling.
110:	Set the carrier frequency to 5 GHz.
120:	Set the output power level to $-3\ dBm$.
130:	Turn average power inhibit on or off.
140:	Set the pulse width to 23 ms.
150:	Set the pulse delay to 100 μ s.
160:	Turn the RF output on.

Generating Repetitive, External Pulse Modulation, Example Program 9

In the following example, a repetitive, externally pulse-modulated signal will be generated at a carrier frequency of 12.02 GHz with a power level of 0 dBm. The pulse characteristics (PRI, width, and delay) will be set with an external pulse source.

To program the synthesizer to generate the signal explained above, connect the output of a pulse source to the synthesizer's PULSE/TRIG GATE IN, set the pulse source for the desired PRI, width, and delay, and then run the following program.

```
10
     Synthesizer=719
     ABORT 7
20
30
    LOCAL 7
40
     CLEAR Synthesizer
     REMOTE Synthesizer
50
     OUTPUT Synthesizer; "*RST"
60
     OUTPUT Synthesizer; "PULM:SOUR EXT"
70
     OUTPUT Synthesizer; "PULM:EXT:POL NORM|INV"
80
90
     OUTPUT Synthesizer; "PULM:STAT ON"
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 12.02GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON!OFF"
140 OUTPUT Synthesizer; "OUTP:STAT ON"
150 END
```

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to external.
80: Set external pulse polarity. Choose "NORM" for non-inverted external pulse modulation or "INV" for inverted external pulse modulation.

90:	Turn pulse modulation on.
100:	Enable internal leveling.
110:	Set the carrier frequency to 12.02 GHz.
120:	Set the output power level to 0 dBm.
130:	Turn average power inhibit on or off.
140:	Turn the RF output on.

Generating a Doublet Pulse, Example Program 10

In the following example, doublet pulses will be generated at a carrier frequency of 10 GHz with a power level of 0 dBm. The pulses will have a 1 μ s pulse width and a pulse delay of 2 μ s.

To program the synthesizer to generate the pulses explained above, connect the output of a pulse source to the synthesizer's PULSE/TRIG GATE IN, set the gate signal source for the desired gate pulse characteristics, and then run the following program.

```
10
    Synthesizer=719
20
    ABORT 7
    LOCAL 7
30
40
    CLEAR Synthesizer
50
    REMOTE Synthesizer
     OUTPUT Synthesizer; "*RST"
60
     OUTPUT Synthesizer; "PULM:SOUR INT"
70
     OUTPUT Synthesizer; "PULS:DOUB ON"
80
     OUTPUT Synthesizer; "PULM:STAT ON"
90
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 10GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
140 OUTPUT Synthesizer; "PULS:WIDT 1US"
150 OUTPUT Synthesizer; "PULS:DEL 2US"
160 OUTPUT Synthesizer; "OUTP:STAT ON"
170 END
```

Program Comments

10:

Assign the synthesizer's HP-IB address to a variable.

20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.

60: Set the synthesizer to its initial state for programming. The

*RST state is the same as the PRESET state.

70: Set pulse source to internal.80: Enable doublet pulse mode.90: Turn pulse modulation on.

100:	Enable internal leveling.
110:	Set the carrier frequency to 10 GHz.
120:	Set the output power level to 0 dBm.
130:	Turn average power inhibit on or off.
140:	Set the pulse width to 1 μ s.
150:	Set the pulse delay to 2 μ s.
160:	Turn the RF output on.

Generating Gated Pulse Modulation, Example Program 11

In the following example, a gated, pulse-modulated signal will be generated at a carrier frequency of 6.67 GHz with a power level of 0 dBm. The pulses will have a $100~\mu s$ pulse width and a pulse repetition frequency of 1 kHz.

To program the synthesizer to generate the signal explained above, connect the output of a gate signal source to the synthesizer's PULSE/TRIG GATE IN, set the gate signal source for the desired gate signal characteristics, and then run the following program.

```
10
     Synthesizer=719
20
     ABORT 7
     LOCAL 7
30
     CLEAR Synthesizer
40
     REMOTE Synthesizer
50
60
     OUTPUT Synthesizer; "*RST"
     OUTPUT Synthesizer; "PULM:SOUR INT"
70
     OUTPUT Synthesizer; "TRIG:SOUR EXT"
80
     OUTPUT Synthesizer; "TRIG:STOP:SOUR EXT"
90
100 OUTPUT Synthesizer; "PULM:STAT ON"
110 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
120 OUTPUT Synthesizer; "FREQ 6.67GHZ"
130 OUTPUT Synthesizer; "POW:LEV ODBM"
140 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
150 OUTPUT Synthesizer; "PULS:WIDT 100US"
160 OUTPUT Synthesizer; "PULS:FREQ 1KHZ"
170 OUTPUT Synthesizer; "OUTP:STAT ON"
180 END
```

Program Comments

10:	Assign the synthesizer's HP-IB address to a variable.
20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.
60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70:	Set pulse source to internal.
80:	Enable triggered pulse mode.

90:	Set the pulse trigger stop source to external.
100:	Turn pulse modulation on.
110:	Enable internal leveling.
120:	Set the carrier frequency to 6.67 GHz.
130:	Set the output power level to 0 dBm.
140:	Turn average power inhibit on or off.
150:	Set the pulse width to 100 μ s.
160:	Set the pulse repetition frequency to 1 kHz.
170:	Turn the RF output on.

Generating an Internal Log AM Signal, Example Program 12

NOTE

The internal AM source is only available with Option 1E2 installed.

In the following example, an internally-leveled, internal Log AM signal will be generated at a carrier frequency of 12.5 GHz with a power level of -3 dBm. The AM rate will be 5 kHz and the AM depth will be 40 dB. In order to accomplish this, run the following program.

10 Synthesizer=719 20 ABORT 7 LOCAL 7 30 CLEAR Synthesizer 40 REMOTE Synthesizer 50 OUTPUT Synthesizer; "*RST" 60 OUTPUT Synthesizer; "AM:SOUR INT" 70 OUTPUT Synthesizer; "AM:INT:FREQ 5KHZ" 80 OUTPUT Synthesizer; "AM:DEPT 40DB" 100 OUTPUT Synthesizer; "AM:STAT ON" 110 OUTPUT Synthesizer; "POW:ALC:SOUR INT" 120 OUTPUT Synthesizer; "FREQ 12.5GHZ" 130 OUTPUT Synthesizer; "POW:LEV -3DBM" 140 OUTPUT Synthesizer; "OUTP:STAT ON" 150 END

Program Comments	10:	Assign the synthesizer's HP-IB address to a variable.		
	20 to 50:	Abort any HP-IB activity and initialize the HP-IB interface.		
	60:	Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.		
	70:	Set the AM source to internal.		
	80:	Set the internal AM rate to 5 kHz.		
	90:	Set the internal AM depth to 40 dB.		
	100:	Turn logarithmic AM on.		
	110:	Enable internal leveling.		
	120:	Set the carrier frequency to 12.5 GHz.		
	130:	Set the output power level to -3 dBm.		
	140:	Turn the RF output on.		

Generating Simultaneous Log AM and Pulse Modulation, Example Program 13

In the following example, an antenna scan pattern will be generated using simultaneous logarithmic AM and internal pulse modulation (external or gated pulse modulation can also be used). A carrier frequency of 2.3 GHz at a peak main lobe power level of 0 dBm will be used. The pulse repetition frequency will be 10 kHz with a pulse width of 1 μ s.

To program the synthesizer to generate the antenna scan pattern explained above, connect the output of an arbitrary waveform generator to the synthesizer's AM IN. Set the arbitrary waveform generator to produce a scan waveform, and then run the following program.

```
10
     Synthesizer=719
     ABORT 7
20
30
     LOCAL 7
40
     CLEAR Synthesizer
     REMOTE Synthesizer
50
     OUTPUT Synthesizer; "*RST"
60
70
     OUTPUT Synthesizer; "PULM:SOUR INT"
     OUTPUT Synthesizer; "TRIG:SOUR IMM"
80
90
      OUTPUT Synthesizer; "PULM:STAT ON"
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 2.3GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "PULS:FREQ 10KHZ"
140 OUTPUT Synthesizer; "PULS:WIDT 1US"
150 OUTPUT Synthesizer; "PULS:DEL OS"
160 OUTPUT Synthesizer; "AM:STAT ON"
 170 OUTPUT Synthesizer; "OUTP:STAT ON"
 180 END
```

Program Comments

10:

Assign the synthesizer's HP-IB address to a variable.

20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.

60: Set the synthesizer to its initial state for programming. The

*RST state is the same as the PRESET state.

70:	Set pulse source to internal.
80:	Set pulse trigger source to immediate (non-triggered).
90:	Turn pulse modulation on.
100:	Enable internal leveling.
110:	Set the carrier frequency to 2.3 GHz.
120:	Set the output power level to 0 dBm (this is the peak main lobe power level). $$
130:	Set the pulse repetition frequency to 10 kHz.
140:	Set the pulse width to 1 μ s.
150:	Set the pulse delay to zero (no delay).
160:	Turn logarithmic amplitude modulation on.
170:	Turn the RF output on.

Level Correction Routine, Example Program 14

The following example demonstrates how to gather level correct data externally, then load the collected data into one of the synthesizer level correct tables. Clear and reset the controller and type in the following program:

```
10
      Synthesizer=719
20
      Power_meter=713
      ABORT 7
30
     LOCAL 7
40
50
      CLEAR Synthesizer
      REMOTE Synthesizer
60
70
      CLS
      OUTPUT Synthesizer; "*RST"
80
90
      OUTPUT Power_meter; "*RST"
100 DIM Frequencies (1:401)
110
    DIM Losses (1:401)
    PRINT "CHOOSE THE START FREQUENCY IN GHZ (1.654321 FOR
120
         EXAMPLE)"
    ENTER KBD; Start_freq
130
140
    PRINT "CHOOSE THE STOP FREQUENCY IN GHZ (15.123456 FOR
         EXAMPLE)"
150 ENTER KBD; Stop_freq
160 PRINT "CHOOSE THE NUMBER OF POINTS (2 TO 401)"
170 ENTER KBD; Points
180 PRINT "CHOOSE THE LEVEL CORRECTION TABLE TO STORE DATA
         INTO (1 TO 4)"
190
     ENTER KBD; Table_num
200 PRINT "CHOOSE THE SYNTHESIZER POWER LEVEL TO USE
         DURING ":
210 PRINT "THE LEVEL CORRECTION"
220 PRINT "(-3.32 FOR EXAMPLE)"
230 ENTER KBD; Power_level
240 OUTPUT Synthesizer; "POW "; Power_level
250 OUTPUT Power_meter: "FM 32 EN"
260 OUTPUT Power_meter; "TRO"
270 Step_freq=(Stop_freq-Start_freq)/(Points-1)
280 Current_freq=Start_freq
```

Programming Typical Measurements

```
290 FOR I=1 TO Points
300
              Frequencies(I)=Current_freq
              OUTPUT Synthesizer; "FREQ "; Current_freq; "GHZ"
310
               OUTPUT Power_meter; "FR "; Current_freq; " GZ"
320
               OUTPUT Power_meter; "TR2"
330
340
               WAIT 5
350
               ENTER Power_meter; Meter_reading
360
               Losses(I)=Power_level-Meter_reading
370
                Current_freq=Current_freq+Step_freq
380 NEXT I
     OUTPUT Synthesizer; "MEM:TABL:SEL
390
            FDAT":TRIM$(VAL$(Table_num))
400
410
     !
        Store frequencies
420
     ļ
430 OUTPUT Synthesizer; "MEM:TABL:FREQ ";
440 FOR I=1 TO Points
450
               OUTPUT Synthesizer; Frequencies(I); "GHZ";
               IF I<Points THEN OUTPUT Synthesizer;",";</pre>
460
470 NEXT I
     OUTPUT Synthesizer USING "/"
480
490
500 !
        Store losses
510 !
520
     OUTPUT Synthesizer; "MEM:TABL:LOSS";
     FOR I=1 TO Points
530
540
               OUTPUT Synthesizer; Losses(I);
               IF I<Points THEN OUTPUT Synthesizer;",";</pre>
550
560 NEXT I
     OUTPUT Synthesizer USING "/"
570
580 PRINT "END OF PROGRAM"
590 END
Run the program.
```

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.

20: Assign the power meter's HP-IB address to a variable.

30 to 60: Abort any HP-IB activity and initialize the HP-IB interface.

70: Clear the computer's display.

80:	Set the synthesizer to its initial state for programming.
90:	Set the power meter to its initial state for programming.
100:	Dimension frequency array.
110:	Dimension correction factor array.
120:	Print a message on the computer display for entering the start frequency.
130:	Enter start frequency into variable Start_freq.
140:	Print a message on the computer display for entering the stop frequency.
150:	Enter stop frequency into variable Stop_freq.
160:	Print a message for entering the number of frequency points to measure.
170:	Enter number of measurement points into variable points.
180:	Print a message on the computer display for entering the desired correction table number.
190:	Enter correction table number into variable Table_num.
200 to 220:	Print a message on the computer display for entering the power level.
230:	
400:	Enter power level into variable Power_level.
240:	Enter power level into variable Power_level. Set synthesizer's power level to the entered value.
	_
240:	Set synthesizer's power level to the entered value.
240: 250:	Set synthesizer's power level to the entered value. Set number of averages.
240: 250: 260:	Set synthesizer's power level to the entered value. Set number of averages. Set power meter to trigger hold mode.
240: 250: 260: 270:	Set synthesizer's power level to the entered value. Set number of averages. Set power meter to trigger hold mode. Calculate the frequency step. Set variable Current_freq equal to the start frequency set by
240: 250: 260: 270: 280:	Set synthesizer's power level to the entered value. Set number of averages. Set power meter to trigger hold mode. Calculate the frequency step. Set variable Current_freq equal to the start frequency set by variable Start_freq.
240: 250: 260: 270: 280:	Set synthesizer's power level to the entered value. Set number of averages. Set power meter to trigger hold mode. Calculate the frequency step. Set variable Current_freq equal to the start frequency set by variable Start_freq. Store current frequency into the Frequencies array.
240: 250: 260: 270: 280: 300: 310:	Set synthesizer's power level to the entered value. Set number of averages. Set power meter to trigger hold mode. Calculate the frequency step. Set variable Current_freq equal to the start frequency set by variable Start_freq. Store current frequency into the Frequencies array. Set synthesizer to the current frequency.

340:	Wait five seconds for power meter to stabilize.
350:	Enter current power meter reading into variable Meter_reading.
360:	Store the correction factor into the Losses array.
370:	Increment the current frequency to the next frequency point to measure. $% \left(1\right) =\left(1\right) \left(1\right) \left($
390:	Select a table for data storage.
430:	Command the synthesizer to load the following frequency points into table.
450:	Add a frequency point into the table.
460:	Add a data separator (comma).
480:	Add a line feed.
520:	Command the synthesizer to load the following correction factors into table.
540:	Add a correction factor into the table.
550:	Add a data separator (comma).
570:	Add a line feed.

Saving and Recalling States, Example Program 15

The complete front panel state may be saved for later use in non-volatile memories called registers 0 through 9. This can be done remotely as a part of a program. Clear and reset the controller and type in the following program:

```
10
    Synthesizer=719
20
    ABORT 7
30
    LOCAL 7
40
    CLEAR Synthesizer
50
    REMOTE Synthesizer
60
70
     OUTPUT Synthesizer; "*RST; FREQ: 4GHZ; POW: LEV -3DBM
              ;OUTP:STAT ON"
     OUTPUT Synthesizer; "*SAV 1"
80
90
100 PRINT "A Synthesizer state has been saved in REGISTER 1."
    OUTPUT Synthesizer; "*RST; FREQ: CW 1.23456GHZ; :POW: LEV -1DBM"
120 OUTPUT Synthesizer; "*SAV 2"
130 PRINT "A CW state has been saved in REGISTER 2."
140 PRINT ".... Press Continue"
150 PAUSE
160 OUTPUT Synthesizer; "*RCL 1"
170 PRINT "Register 1 recalled. Verify Synthesizer output power."
180 PRINT "Press Continue."
190 PAUSE
200 OUTPUT Synthesizer; "*RCL 2"
210 PRINT "Register 2 recalled."
220 PRINT "Verify Synthesizer is in CW mode."
230 END
```

Run the program.

Programming Typical Measurements

Program Comments 10: Assign the synthesizer's HP-IB address to a variable.

20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.

60: Clear the computer's display.

70: Set up a synthesizer state. Note the combination of several

commands into a single message. This single line is equivalent

to the following lines:

OUTPUT Synthesizer; "*RST"
OUTPUT Synthesizer; "FREQ 4GHZ"
OUTPUT Synthesizer; "POW:LEV -3DBM"
OUTPUT Synthesizer; "OUTP:STAT ON"

80: Save this state into storage register 1.

90: Clear the computer display.

100: Print a message on the computer display.

110: Setup the synthesizer for a CW state. Note the combination of

several commands into a single message. This single line is

equivalent to the following lines:

OUTPUT Source; "*RST"

OUTPUT Source; "FREQ:CW 1.23456 GHZ"

OUTPUT Source; "POW:LEV -1DBM"

120: Save this state into storage register 2.

130 to 150: Print a message on the computer display and pause.

160: Recall the instrument state from register 1.

170 to 190: Print a message on the computer display and pause.

200: Recall the instrument state from register 2. It should contain

the CW state.

210 and 220: Print messages on the computer display.

Related Documents

IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation. The International Institute of Electrical and Electronics Engineers, New York, NY, 1987.

This standard defines the technical details required to design and build an HP-IB interface (IEEE 488.1). This standard contains electrical specifications and information on protocol that is beyond the needs of most programmers. However, it can be useful to clarify formal definitions of certain terms used in related documents.

IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and Common Commands For Use with ANSI/IEEE Std 488.1-1987. The International Institute of Electrical and Electronics Engineers, New York, NY, 1987.

This document describes the underlying message formats and data types used in SCPI. It is intended more for instrument firmware engineers than for instrument user/programmers. However, you may find it useful if you need to know the precise definition of certain message formats, data types, or common commands.

NOTE

To obtain a copy of either of these documents, write to:

The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, NY 10017 USA

BASIC 5.0/5.1 Interfacing Techniques. Vol. 2, Specific Interfaces. Hewlett-Packard Company 1987.

This HP BASIC manual contains a good non-technical description of the HP-IB (IEEE 488.1) interface in Chapter 12, "The HP-IB Interface." Subsequent revisions of HP BASIC may use a slightly different title for this manual or

Related Documents

chapter. This manual is the best reference on instrument I/O for HP BASIC programmers.

Tutorial Description of the Hewlett-Packard Interface Bus Hewlett-Packard Company, 1987.

This book provides a thorough overview of HP-IB basics for the HP-IB system designer, programmer, or user.

NOTE

To obtain a copy of either of these documents, contact the Hewlett-Packard representative listed in your telephone directory.

Standard Commands for Programmable Instruments (SPCI)
This document defines the Standard Commands for Programmable
Instruments (SPCI) Consortium's SCPI standards.

NOTE

To obtain the above document, contact:

SCPI Consortium 8380 Hercules Drive, Suite P3 La Mesa, CA 91942

Phone: (619) 697-8790 FAX: (619) 697-5955 CompuServe: 76516,254 $\overline{2}$

Programming Commands

Programming Commands

This chapter contains detailed information on all the programming commands used by the synthesizer. The chapter is sub-divided into logical groupings of commands that are tabbed. For example, all programming commands pertaining to automatic level control are contained in one tabbed section. The individual commands are organized alphabetically within each section. The remainder of this chapter introduction contains information that pertains to all programming commands. The programming command entries begin with the tab labeled "Automatic Level Control Commands" and end with the tab labeled "Status Register Commands."

Command Syntax

Following the heading for each programming command entry is a syntax statement showing the proper syntax for the command. An example syntax statement is shown below:

Syntax statements read from left to right and top to bottom. In the above example, the ":STEP" portion of the statement immediately follows the "[:AMPLitude]" portion of the statement with no separating space. A separating space is legal only between the command and its argument. In the above example, the portion following the "[:INCRement]" portion of the statement is the argument. Additional conventions used in the syntax statements are defined as follows:

- italics are used to symbolize a program code parameter or query response.
- ::= means "is defined as".
- | (vertical bar) indicates a choice of one element from a list. For example, <A> | indicates <A> or but not both.
- ... (an ellipsis) is used to indicate that the preceding element may be repeated one or more times.
- [] (square brackets) indicate that the enclosed items are optional.
- { } (braces) indicate that one and only one of the enclosed elements must be selected.
- Uppercase lettering (FREQuency) indicates that the uppercase portion of the command is the minimum required for the command.
- Lowercase lettering (FREQuency) indicates that the lowercase portion of the command is optional; it can either be included with the upper-case portion of the command or omitted.

Programming Commands

2a

Automatic Level Control Commands

Automatic Level Control Commands

This sub-chapter contains detailed information on all programming commands pertaining to automatic level control.

[SOURce[1]:]POWer:ALC:PMETer

The "[SOURce[1]:]POWer:ALC:PMETer" command is used to enter the initial reading of the external power meter to the synthesizer for use during external power meter leveling.

The parameters are as follows:

pmeter	Enters the initial	reading of the	external	power meter to
DITUOUUI	Little of the little	I COULTING OF ONE	CZXUCIIIU	DO HOL TILOUGE GO

the synthesizer. The allowable range for the parameter is $-120~\rm{dBm}$ ($-100~\rm{dBm}$ for HP 83731A/32A) to $+30~\rm{dBm}$ when Option 1E1 is installed or $-15~\rm{dBm}$ to $+30~\rm{dBm}$ if

Option 1E1 is not installed.

MAXimum Sets the initial power meter reading to its maximum

allowable value.

MINimum Sets the initial power meter reading to its minimum

allowable value.

UP Increases the entered initial power meter reading by the

current increment value.

DOWN Decreases the entered initial power meter reading by the

current increment value.

DEFault Sets the initial power meter reading to its default (preset)

value.

The power meter reading set with the "[SOURce[1]:]POWer:ALC:PMETer" command allows the synthesizer to calculate the value of the voltage present at the power meter recorder output connector.

[SOURce[1]:]POWer:ALC:PMETer

If an initial power meter reading is entered that is outside of its allowable range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the parameter is 0 dBm.

Query Syntax

```
[SOURce[1]:]POWer:ALC:PMETer[:LEVel][:AMPLitude]?
[MAXimum]
MINimum
DEFault]
```

Returned format:

pmeter<NL>

Where:

- *pmeter* ::= The current entered initial power meter reading if no argument is specified.
- *pmeter* ::= The maximum initial power meter reading that can be set if the MAXimum argument is specified.
- *pmeter* ::= The minimum initial power meter reading that can be set if the MINimum argument is specified.
- pmeter ::= The default (preset) initial power meter reading if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer:ALC:PMETer:STEP [SOURce[1]:]POWer:ALC:SOURce

UNIT:POWer|:VOLTage

[SOURce[1]:]POWer:ALC:PMETer:STEP

```
[SOURce[1]:]POWer:ALC:PMETer[:LEVel]:STEP[:INCRement]

{ incr
MAXimum
MINimum
DEFault }
```

The "[SOURce[1]:]POWer:ALC:PMETer:STEP" command selects the increment value for the entered initial power meter reading.

The parameters are as follows:

incr Sets the increment value for the initial power meter reading.

The allowable range for the parameter is 0.01 dB to 130 dB when Option 1E1 is installed or 0.01 dB to 45 dB if

Option 1E1 is not installed.

MAXimum Sets the increment value for the initial power meter reading

to its maximum allowable value.

MINimum Sets the increment value for the initial power meter reading

to its minimum allowable value.

DEFault Sets the increment value for the initial power meter reading

to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]POWer:ALC:PMETer" command, the initial power meter reading will be increased or decreased by a step size set with the "[SOURce[1]:]POWer:ALC:PMETer:STEP" command.

Numeric power meter reading increment value entries have a resolution of $0.01 \ dB$.

If an initial power meter reading increment value entry is made that is not within the allowable parameter range, an error message will be generated and it will be set to either its maximum or minimum limit. The preset value for the initial power meter reading increment value is 1 dB.

[SOURce[1]:]POWer:ALC:PMETer:STEP

Query Syntax

```
[SOURce[1]:]POWer:ALC:PMETer[:LEVel]:STEP[:INCRement]?

[MAXimum]
MINimum
DEFault
```

Returned format:

incr<NL>

Where:

- *incr* ::= The current power meter reading increment value if no argument is specified.
- *incr* ::= The maximum power meter reading increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum power meter reading increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) power meter reading increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer:ALC:PMETer UNIT:POWer|:VOLTage

[SOURce[1]:]POWer:ALC:SOURce

The "[SOURce[1]:]POWer:ALC:SOURce" command selects the type of leveling for output power automatic level control.

The parameters are as follows:

INTernal

Selects internal leveling.

DIODe

Selects external diode detector leveling.

PMETer

Selects external power meter leveling.

The EXT DIODE (diode detector leveling), EXT METER (power meter leveling), and (NT LEVEL) (internal leveling) entries in Chapter 6 of the HP 83731B/32B Synthesized Signal Generators User's Guide and HP 83731A/32A Synthesized Signal Generators User's Guide provide detailed information on the type of leveling you select.

When the synthesizer is set to the preset state, internal leveling is selected.

Query Syntax

[SOURce[1]:]POWer:ALC:SOURce?

Returned format:

source<NL>

Where:

• source ::= "INT" if internal leveling is currently selected.

• source ::= "DIOD" if external diode detector leveling is currently selected.

• *source* ::= "PMET" if external power meter leveling is currently selected.

[SOURce[1]:]POWer:ALC:SOURce

See Also

EXT DIODE

EXT METER

INT LEVEL

[SOURce[1]:]POWer:ALC:PMETer

[SOURce[1]:]POWer[:LEVel]
To Use External Diode Detector Leveling

To Use External Power Meter Leveling

2b

Carrier Commands

Carrier Commands

This sub-chapter contains detailed information on all programming commands pertaining to carrier control

[SOURce[1]:]FREQuency[:CW|:FIXed]

The "[SOURce[1]:]FREQuency[:CW|:FIXed]" command sets the output frequency of the synthesizer.

The parameters are as follows:

freq Sets the synthesizer output frequency.

MAXimum Sets the synthesizer output frequency to the maximum

allowable value.

MINimum Sets the synthesizer output frequency to the minimum

allowable value.

UP Increases the synthesizer output frequency by the current

output frequency increment value.

DOWN Decreases the synthesizer output frequency by the current

output frequency increment value.

DEFault Sets the synthesizer output frequency to its default (preset)

value.

The frequency entered is the CW frequency if no modulation is chosen, or the carrier frequency of any modulation type that is chosen. The preset value for the frequency parameter is 3 GHz.

The allowable range for the frequency parameter is 1.0 GHz to 20 GHz for the HP 83731A/31B or 0.01 GHz to 20 GHz for the HP 83732A/32B. If a frequency parameter entry is made that is outside the allowable range, an error message will be generated and the actual frequency will be set to either its upper or lower limit. Frequency resolution is 1 kHz. If Option 1E8 is installed, frequency resolution is 1 Hz.

[SOURce[1]:]FREQuency[:CW|:FIXed]

Query Syntax

[SOURce[1]:]FREQuency[:CW|:FIXed]? [MAXimum]
DEFault

Returned format:

freq<NL>

Where:

- freq ::= The current output frequency if no argument is specified.
- *freq* ::= The maximum output frequency that can be set if the MAXimum argument is specified.
- *freq* ::= The minimum output frequency that can be set if the MINimum argument is specified.
- *freq* ::= The default (preset) output frequency if the DEFault argument is specified.

See Also

[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP

[SOURce[1]:]FREQuency:MULTiplier

UNIT:FREQuency

[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP

```
[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP[:INCRement]

incr
MAXimum
MINimum
DEFault
```

The "[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP" command selects the increment value for the synthesizer output frequency.

The parameters are as follows:

incr Sets the increment value for output frequency. The

allowable range (without Option 1E8) for the parameter is 1 kHz to 19.99 GHz. If Option 1E8 is installed, the allowable

range for the parameter is 1Hz to 19.99 GHz.

MAXimum Sets the output frequency increment value to its maximum

allowable value.

MINimum Sets the output frequency increment value to its minimum

allowable value.

DEFault Sets the output frequency increment value to its default

(preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]FREQuency[:CW|:FIXed]" command, the output frequency will be increased or decreased by the step size set with the "[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP" command.

If an output frequency increment value entry is made that is not within the allowable parameter range, an error message will be generated and the incremental value will be set to either its maximum or minimum limit. The preset value for the output frequency increment value is 100 MHz.

[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP

Query Syntax

```
[SOURce[1]:]FREQuency[:CW|:FIXed]:STEP[:INCRement]?

[MAXimum]

MINimum

DEFault
```

Returned format:

incr<NL>

Where:

- *incr* ::= The current output frequency increment value if no argument is specified.
- *incr* ::= The maximum output frequency increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum output frequency increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) output frequency increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FREQuency[:CW|:FIXed] UNIT:FREQuency

[SOURce[1]:]FREQuency:MULTiplier

$$[\texttt{SOURce[1]:]} \texttt{FREQuency:MULTiplier} \left\{ \begin{array}{l} \textit{mult} \\ \texttt{MAXimum} \\ \texttt{MINimum} \\ \texttt{UP} \\ \texttt{DOWN} \\ \texttt{DEFault} \end{array} \right.$$

The "[SOURce[1]:]FREQuency:MULTiplier" command sets the multiplier value so that the synthesizer display will indicate the frequency at the output of an external frequency multiplier.

The parameters are as follows:

mult Sets the multiplier value. The allowable range for the

parameter is 1 to 100.

MAXimum Sets the multiplier value to its maximum allowable value.

MINimum Sets the multiplier value to its minimum allowable value.

UP Increases the multiplier value by the current multiplier value

increment value.

DOWN Decreases the multiplier value by the current multiplier

value increment value.

DEFault Sets the multiplier value to its default (preset) value.

If a frequency multiplier value is entered that is out of range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the multiplier value is 1.

Entering a frequency multiplier value is useful when an output frequency will be generated with external multiplier equipment. Setting the multiplier value scales the display so that the frequency shown on the display will be the frequency at the output of the external frequency multiplier, not at the synthesizer RF OUTPUT connector.

When the multiplier function is being used and you enter a frequency parameter value with the "[SOURce[1]:]FREQuency[:CW|:FIXed]" command,

[SOURce[1]:]FREQuency:MULTiplier

be aware that the entered frequency divided by the multiplier value (the frequency before multiplication) has a minimum resolution of 1 kHz. As an example, assume a multiplier value of 2 has been entered and you attempt to enter a frequency of 4,000,001,000 Hz. The actual frequency that the synthesizer would need to generate would be 2,000,000,500 Hz. The synthesizer, however, can not output this signal because the standard specified resolution is 1 kHz. In this case, the actual output frequency would be rounded to 2,000,001,000 Hz and the display would show 4,000,002,000 Hz.

Query Syntax

[SOURce[1]:]FREQuency:MULTiplier? MINimum
DEFault

Returned format:

mult < NL >

Where:

- mult ::= The current multiplier value if no argument is specified.
- *mult* ::= The maximum multiplier value that can be set if the MAXimum argument is specified.
- *mult* ::= The minimum multiplier value that can be set if the MINimum argument is specified.
- *mult* ::= The default (preset) multiplier value if the DEFault argument is specified.

See Also

[SOURce[1]:]FREQuency[:CW|:FIXed] [SOURce[1]:]FREQuency:MULTiplier:STEP To Generate Millimeter Signals

[SOURce[1]:]FREQuency:MULTiplier:STEP

```
[SOURce[1]:]FREQuency:MULTiplier:STEP[:INCRement]

{ incr
MAXimum
MINimum
DEFault
```

The "[SOURce[1]:]FREQuency:MULTiplier:STEP" command selects the increment value for the external frequency multiplier value.

The parameters are as follows:

incr Sets the multiplier increment value. The allowable range for

the parameter is 1 to 99.

MAXimum Sets the multiplier increment value to its maximum

allowable value.

MINimum Sets the multiplier increment value to its minimum

allowable value.

DEFault Sets the multiplier increment value to its default (preset)

value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]FREQuency:MULTiplier" command, the multiplier value will be increased or decreased by a step size set with the "[SOURce[1]:]FREQuency:MULTiplier:STEP" command.

If a multiplier increment value entry is made that is not within its allowable parameter range, an error message will be generated and it will be set to either its maximum or minimum limit. The preset value for the multiplier increment value is 1.

Query Syntax

```
[SOURce[1]:]FREQuency:MULTiplier:STEP[:INCRement]?
[MAXimum
MINimum
DEFault
```

Returned format:

incr<NL>

Where:

- incr ::= The current multiplier increment value if no argument is specified.
- *incr* ::= The maximum multiplier increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum multiplier increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) multiplier increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FREQuency:MULTiplier

Carrier Commands

2c

Instrument Information Commands

Instrument Information Commands

This sub-chapter contains detailed information on all programming commands pertaining to instrument-specific information.

*IDN? (Identification Query)

*IDN?

The "*IDN?" query returns a string that contains the instrument model number, serial number, and firmware revision number.

When the "*IDN?" query is received by the instrument, it returns the following string:

HEWLETT-PACKARD,8373XX,ser no,REVXX.Y

Where 8373XX is the instrument model number (HP 83731A, HP 83731B, HP 83732A, or HP 83732B), $ser\ no$ is the instrument serial number, and XX.Y is the firmware revision number.

Note that "*IDN?" should always be the last query in a command line.

*OPT? (Option Identification Query)

*OPT?

The "*OPT?" query returns a list of the synthesizer option numbers.

In response to the "*OPT?" query, the synthesizer will return a string in the following form:

option#1,option#2,option#3,....option#n,

The possible synthesizer options returned with this command are shown in the following table. If the synthesizer contains none of the options stated in the following table, "0" will be returned.

Table 2c-1. Synthesizer Options

Option Number	Description
1E1	Add step attenuator.
1E2	Add internal AM and FM/ ϕ M sources.
1E5	Add high stability timebase.
1E8	Add 1 Hz Frequency Resolution.
1E9	3.5 mm RF Output connector.
800	Add phase modulation.

OUTPut:IMPedance?

OUTPut:IMPedance? MINimum DEFault

The "OUTPut:IMPedance?" query returns the output impedance of the synthesizer RF OUTPUT connector.

NOTE

When the "OUTPut:IMPedance?" query is sent, the following is returned: imp < NL >

Where:

- imp ::= The current output impedance if no argument is specified. In this version of the synthesizer, "+5.000000000000E+001" will always be returned.
- imp ::= The maximum output impedance that can be obtained when the MAXimum argument is specified. In this version of the synthesizer, "+5.000000000000E+001" will always be returned.
- imp ::= The minimum output impedance that can be obtained when the MINimum argument is specified. In this version of the synthesizer, "+5.000000000000E+001" will always be returned.
- imp ::= The default (preset) output impedance if the DEFault argument is specified. In this version of the synthesizer, "+5.000000000000E+001" will always be returned.

[SOURce[1]:]ROSCillator:SOURce?

[SOURce[1]:]ROSCillator:SOURce?

The "[SOURce[1]:]ROSCillator:SOURce?" query returns the source of the synthesizer timebase reference.

When the "[SOURce[1]:]ROSCillator:SOURce?" query is sent, the following is returned:

Sour<NL>

Where:

- *Sour* ::= "INT" if the synthesizer internal timebase reference is currently in use.
- Sour ::= "EXT" if an external timebase reference is currently in use.

The synthesizer timebase is automatically switched to external if a signal greater than 0~dBm is applied to the 10 MHz IN BNC connector.

See Also

Connectors

SYSTem: ERRor?

SYSTem: ERRor?

The "SYSTem:ERRor?" query returns the oldest uncleared error number and error description from the synthesizer HP-IB error queue.

NOTE

The HP-IB error queue is separate from the front panel error queue (that is read by pressing the MSG) key). Reading and clearing the HP-IB error queue has no effect on the front panel error queue.

When an error is read, it is cleared as long as the error condition no longer exists.

When the "SYSTem:ERRor?" query is sent, only the oldest unread error in the HP-IB error queue will be returned.

NOTE

The list of error messages in Chapter 3 is organized in ascending error number order. Use the error number enclosed in parentheses when looking up the error condition in Chapter 3.

The HP-IB error queue can contain a maximum of 16 error messages. If the HP-IB error queue overflows, the 16th error in the queue will be replaced with -350, "Queue overflow". If the queue is empty, the message 0, "No error" will be returned.

SYSTem:ERRor?

NOTE

The HP-IB error queue returns the oldest error message when queried. Preset has no effect on the HP-IB error queue; it is only cleared at power up, by sending the "*CLS" command, or by reading its entire contents.

See Also

*CLS Error Messages

SYSTem: VERSion?

SYSTem: VERSion?

The "SYSTem: VERSion?" query returns the SCPI (Standard Commands for Programmable Instruments) version number that the synthesizer supports.

When the "SYSTem:VERSion?" query is sent, the following is returned: vers < NL >

Where:

• vers ::= The SCPI version number currently supported by the synthesizer.

*TST? (Self-Test Query)

*TST?

The "*TST?" query causes the instrument to perform a self-test.

No external equipment is required to run the instrument self-test. Prior to running the self-test, disconnect any equipment that is connected to the RF OUTPUT as the synthesizer might generate high output power during the self-test. When the self-test is complete, the synthesizer is set to the preset state.

The result of the instrument self-test will be placed in the output queue. A 0 indicates that the test passed and a non-zero value indicates that one or more of the self-test segments failed.

2d

Instrument State Commands

Instrument State Commands

This sub-chapter contains detailed information on all programming commands pertaining to the state of the synthesizer.

*LRN? (Learn Device Setup Query)

*LRN?

The "*LRN?" query returns an HP-IB command that contains the current state of the synthesizer.

The information returned in response to the "*LRN?" query can be stored in a string variable in computer memory. When the string is issued to the synthesizer, the instrument settings are changed back to the state when the "*LRN?" query was executed.

The instrument settings captured by executing the "*LRN?" query include everything that is saved by executing the "*SAV" command. This includes user settings, including any active user special functions (and everything else affected by sending the "*RST" command).

NOTE

The instrument will not return the contents of the save/recall registers in response to executing the "*LRN?" query, nor the user flatness correction arrays.

The *LRN? response may have any ASCII character including "LF", so you must use the "USING" option of the "ENTER" BASIC command to cause the array variable to fill up until a <LF><EOI> sequence occurs.

*LRN? (Learn Device Setup Query)

See Also

- *RCL *RST *SAV

MEMory:RAM:INITialize

MEMory:RAM:INITialize[:ALL]

The "MEMory:RAM:INITialize" command clears all of the synthesizer Random Access Memory (RAM).

When the "MEMory:RAM:INITialize" command is sent, all user settings are set to the preset state, save/recall registers are erased, and level correction data is cleared. Sending the "MEMory:RAM:INITialize" command does not clear factory calibration data stored in the instrument EEPROM. This command is useful when removing the synthesizer from a secure area as the setup history of the synthesizer will be erased.

See Also

ERASE MEMORY
*RST
SYSTem:PRESet

*RCL (Recall Command)

*RCL register

The "*RCL" command allows you to recall a previously stored instrument state from one of ten register locations.

The parameter is as follows:

register

The number of the register where the desired instrument state has been stored. The number must be an integer from 0 to 9.

If you attempt to recall an instrument state from a register location to which an instrument state had not been previously saved, the preset state is recalled

Instrument state registers are located in battery-backed RAM.

See Also

*SAV

*RST (Reset Command)

*RST

The "*RST" command sets the synthesizer to its initial state for programming.

The "*RST" (preset) conditions are shown in the following table:

*RST (Reset Command)

Table 2d-1. PRESET Conditions

Parameter	Condition	Parameter	Condition
:AM:DEPTh	6dB	:PM:SOURce	EXT
:AM:SENSitivity	—10 dB/Volt	:PM:SENSitivity	1rad/Volt ¹
:AM:STATe	OFF	:PM:COUPling	AC ¹
:AM:SOURce	EXT	:POWer:LEVel	0 dBm ²
:AM:TYPE	EXP	:POWer:ALC:SOURce	INT
:AM:INTernal:FUNC	SIN ¹	:POWer:ALC:PMETer:LEVel	0 dBm
:AM:INTernal:FREQuency	5 kHz	:POWer:ATTenuation:AUTO	ON
:CORRection:STATe	OFF	:POWer:PROection:STATe	OFF
:CORRection:CSET:SElect	FDAT1	:PULM:SOURce	EXT
:CORRection:CSET:STATe	OFF	:PULM:STATe	OFF
:DISPlay:WINDow:STATe	ON	:PULM:EXTernal:POLarity	NORM
:FM:DEViation	1 MHz	:PULSe:DELay	1 μ s
:FM:STATe	OFF	:PULSe:FREQuency	10 kHz
:FM:SOURce	EXT	:PULSe:PERiod	100 μs
:FM:COUPling	AC	:PULSe:DOUBle:STATe	OFF
:FM:SENSitivity	5 MHz/Volt	:PULSe:TRANsition:LEADing	FAST
:FM:INTernal:FUNC	SIN ¹	:PULSe:TRANsition:STATe	OFF
:FM:INTernal:FREQuency	100 kHz	:PULSe:TRANsition:TRAiling	FAST
:FREQuency:CW	3 GHz	:PULSe:WIDth	10 μs
:FREQuency:MULTiplier	1	:SYSTem:COMMunicate:GPIB:ADDRess	19 ³
:MEMory:TABLe:SELect	FDAT1	:SYSTem:COMMunicate:PMETer:ADDRess	13 ³
:MODulation:OVDR	OFF ¹	:SYSTem:LANGuage	"SCPI" ³
:OUTPut:STATe	ON	:TRIGger:SEQuence:SOURce	IMM
:OUTPut:PROTection:STATe	ON	:TRIGger:SEQ2:SOURce	IMM
:PM:DEViation	3 rads ¹	:TRIGger:SEQ2:SLOPe	NEG
:PM:INTernal:FUNC	SIN ¹	:UNIT:FREQuency	HZ
:PM:INTernal:FREQuency	10 kHz ¹	:UNIT:POWer	DBM
:PM:RANGe	AUTO ¹	:UNIT:TIME	s
:PM:STATe	OFF ¹		•

¹ Only available on HP 83731B/32B.

² When Option 1E1 is installed, the preset power is -90 dBm for HP 83731A/32A instruments, and -110 dBm for HP 83731B/32B instruments.

³ Do not change with preset. These are the default values when RAM is lost.

See Also

SYSTem:PRESet

*SAV (Save Command)

*SAV register

The "*SAV" command allows you to save the instrument state in one of ten register locations.

The parameter is as follows:

register

The number of the register where the instrument state is to be stored. The number must be an integer from 0 to 9.

All user settings that are affected by preset will be saved. Level correction tables will not be saved.

Saving the instrument state to a given register location will write over any instrument state previously stored in that register.

Instrument state registers are located in battery-backed RAM.

See Also

*RCL

SYSTem:PRESet

SYSTem: PRESet

The "SYSTem:PRESet" command sets the synthesizer to the preset state.

The "SYSTem:PRESet" (preset) conditions are identical to those of the *RST command.

SYSTem:PRESet

Table 2d-2. PRESET Conditions

Parameter	Condition	Parameter	Condition
:AM:DEPTh	6dB	:PM:SOURce	EXT;
:AM:SENSitivity	—10 dB/Volt	:PM:SENSitivity	1rad/Volt ¹
:AM:STATe	OFF	:PM:COUPling	AC ¹
:AM:SOURce	EXT	:POWer:LEVel	0 dBm ²
:AM:TYPE	EXP	:POWer:ALC:SOURce	INT
:AM:INTernal:FUNC	SIN ¹	:POWer:ALC:PMETer:LEVel	0 dBm
:AM:INTernal:FREQuency	5 kHz	:POWer:ATTenuation:AUTO	ON
:CORRection:STATe	OFF	:POWer:PROection:STATe	OFF
:CORRection:CSET:SELect	FDAT1	:PULM:SOURce	EXT
:CORRection:CSET:STATe	OFF	:PULM:STATe	OFF
:DISPlay:WINDow:STATe	ON	:PULM:EXTernal:POLarity	NORM
:FM:DEViation	1 MHz	:PULSe:DELay	1 μs
:FM:STATe	OFF	:PULSe:FREQuency	10 kHz
:FM:SOURce	EXT	:PULSe:PERiod	100 μs
:FM:COUPling	AC	:PULSe:DOUBle:STATe	OFF
:FM:SENSitivity	5 MHz/Volt	:PULSe:TRANsition:LEADing	FAST
:FM:INTernal:FUNC	SIN ¹	:PULSe:TRANsition:STATe	OFF
:FM:INTernal:FREQuency	100 kHz	:PULSe:TRANsition:TRAiling	FAST
:FREQuency:CW	3 GHz	:PULSe:WIDth	10 μs
:FREQuency:MULTiplier	1	:SYSTem:COMMunicate:GPIB:ADDRess	19 ³
:MEMory:TABLe:SELect	FDAT1	:SYSTem:COMMunicate:PMETer:ADDRess	13 ³
:MODulation:OVDR	OFF ¹	:SYSTem:LANGuage	"SCPI"3
:OUTPut:STATe	ON	:TRIGger:SEQuence:SOURce	IMM
:OUTPut:PROTection:STATe	ON	:TRIGger:SEQ2:SOURce	ІММ
:PM:DEViation	3 rads ¹	:TRIGger:SEQ2:SLOPe	NEG
:PM:INTernal:FUNC	SIN ¹	:UNIT:FREQuency	HZ
:PM:INTernal:FREQuency	10 kHz ¹	:UNIT:POWer	DBM
:PM:RANGe	AUTO ¹	:UNIT:TIME	s
:PM:STATe	OFF ¹		

¹ Only available on HP 83731B/32B.

² When Option 1E1 is installed, the preset power is -90 dBm for HP 83731A/32A instruments, and -110 dBm for HP 83731B/32B instruments.

³ Do not change with preset. These are the default values when RAM is lost.

	A	^	
Inetrument	State:	i'omms	nde

See A	lso
-------	-----

*RST

Instrument State Commands

2e

Level Correction Commands

Level Correction Commands

This sub-chapter contains detailed information on all programming commands pertaining to level correction.

MEMory:CATalog[:ALL]?

MEMory:CATalog[:ALL]?

The "MEMory:CATalog[:ALL]?" query lists all level correction tables.

This command always returns the following:

 $1604,0,\ "FDAT1,TABLe,401",\ "FDAT2,TABLe,401",\ "FDAT3,TABLe,401",\ "FDAT4,TABLe,401".$

See Also

MEMory: CATalog: TABLe?

MEMory:CATalog:TABLe?

MEMory:CATalog:TABLe?

The "MEMory:CATalog:TABLe?" query lists all level correction tables.

This command always returns the following:

 $1604,0,\ "FDAT1,TABLe,401",\ "FDAT2,TABLe,401",\ "FDAT3,TABLe,401",\ "FDAT4,TABLe,401".$

See Also

MEMory:CATalog[:ALL]?

MEMory:TABLe:FREQuency

The "MEMory:TABLe:FREQuency" command is used to load the frequency points into the level correct table selected using the "MEMory:TABLe:SELect" command.

The parameter is as follows:

freq

The frequency points that make up the frequency portion of a level correct table. Each "freq" parameter can be a numeric value or one of two optional parameters. These are explained further below:

- If the "freq" parameter is a numeric value, the parameter range is 1 GHz to 20 GHz for the HP 83731A/31B and 0.01 GHz to 20 GHz for the HP 83732A/32B.
- If the "freq" parameter is replaced with MAXimum, that frequency element of the level correct table will be set to its maximum allowable value.
- If the "freq" parameter is replaced with MINimum, that frequency element of the level correct table will be set to its minimum allowable value.

The string of frequency points must be separated by commas and can be from 2 to 401 frequency points long. If the string of frequency points is not in ascending order, an error message is generated and the string of frequency points is rejected (the previous frequency points in the table are unaffected).

If a frequency point entry is made that is not within its allowable range, an error message will be generated and the parameter will be set to either its upper or lower limit. The resolution for all frequency points is 1 kHz. All tables are preset at the factory with no frequency points loaded. Once loaded with frequency points, pressing the PRESET key has no effect on frequency points loaded into the tables.

MEMory:TABLe:FREQuency

NOTE

The total number of frequency points loaded using this command must be identical to the number of correction factors loaded with the "MEMory:TABLe:LOSS[:MAGNitude]" command. If they aren't identical, an error message will be generated when you try to use the table to correct power at the RF OUTPUT connector.

Query Syntax

MEMory: TABLe: FREQuency? MAXimum MINimum

Returned format:

fdata<NL>

Where:

- *fdata* ::= The string of frequency points (separated by commas) that are currently loaded in the table selected with the "MEMory:TABLe:SELect" command if no argument is used.
- fdata ::= The maximum allowable frequency value for any frequency point if the MAXimum argument is specified.
- fdata ::= The minimum allowable frequency value for any frequency point if the MINimum argument is specified.

See Also

MEMory:TABLe:FREQuency:POINts?
MEMory:TABLe:LOSSI:MAGNitudel

MEMory:TABLe:LOSS[:MAGNitude]
MEMory:TABLe:LOSS[:MAGNitude]:POINts?

MEMory:TABLe:SELect

To Use the Level Correct Routine

MEMory:TABLe:FREQuency:POINts?

MEMory:TABLe:FREQuency:POINts? [MAXimum] MINimum]

The "MEMory:TABLe:FREQuency:POINts?" query returns the number of frequency points loaded into the level correct table currently selected using the "MEMory:TABLe:SELect" command.

When the "MEMory:TABLe:FREQuency:POINts?" query is sent, the following is returned:

poin<NL>

Where:

- *poin* ::= The number of frequency points currently loaded into the selected level correct table if no argument is specified.
- poin ::= The maximum number of frequency points that can be loaded into a table when the MAXimum argument is specified.
- poin ::= The minimum number of frequency points that can be loaded into a table when the MINimum argument is specified.

See Also

MEMory:TABLe:FREQuency MEMory:TABLe:SELect

To Use the Level Correct Routine

MEMory:TABLe:LOSS[:MAGNitude]

The "MEMory:TABLe:LOSS[:MAGNitude]" command is used to load the correction factors into the level correct table selected using the "MEMory:TABLe:SELect" command.

The parameter is as follows:

cf.

The correction factors that make up the correction factor portion of a level correct table. Each "cf" parameter can be a numeric value or one of two optional parameters. These are explained further below:

- If the "cf" parameter is a numeric value, the parameter range is −40 dB to +40 dB.
- If the "cf" parameter is replaced with MAXimum, that correction factor element of the level correct table will be set to its maximum allowable value.
- If the "cf" parameter is replaced with MINimum, that correction factor element of the level correct table will be set to its minimum allowable value.

The string of correction factors must be separated by commas and can be from 2 to 401 correction factors long.

If a correction factor entry is made that is not within its allowable range, an error message will be generated and the parameter will be set to either its upper or lower limit. The resolution for all correction factors is 0.01 dB. All tables are preset at the factory with no correction factors loaded. Once loaded with correction factors, pressing the (PRESET) key has no effect on correction factors loaded into the tables.

MEMory:TABLe:LOSS[:MAGNitude]

NOTE

The total number of correction factors loaded using this command must be identical to the number of frequency points loaded with the "MEMory:TABLe:FREQuency" command. If they aren't identical, an error message will be generated when you try to use the table to correct power at the RF OUTPUT connector.

Query Syntax

MEMory: TABLe: LOSS[:MAGNitude]? MAXimum MINimum

Returned format:

cfdata < NL >

Where:

- cfdata ::= The string of correction factors (separated by commas) that are currently loaded in the table selected with the "MEMory:TABLe:SELect" command if no argument is used.
- cfdata ::= The maximum allowable decibel value for any correction factor if the MAXimum argument is specified.
- *cfdata* ::= The minimum allowable decibel value for any correction factor if the MINimum argument is specified.

See Also

MEMory:TABLe:FREQuency

MEMory:TABLe:FREQuency:POINts?

MEMory:TABLe:LOSS[:MAGNitude]:POINts? MEMory:TABLe:SELect

To Use the Level Correct Routine

MEMory:TABLe:LOSS[:MAGNitude]:POINts?

MEMory:TABLe:LOSS[:MAGNitude]:POINts? MINimum

The "MEMory: TABLe: LOSS[:MAGNitude]: POINts?" query returns the number of correction factors loaded into the level correct table currently selected using the "MEMory: TABLe: SELect" command.

When the "MEMory:TABLe:LOSS[:MAGNitude]:POINts?" query is sent, the following is returned:

poin<NL>

Where:

- *poin* ::= The number of correction factors currently loaded into the selected level correct table if no argument is specified.
- *poin* ::= The maximum number of correction factors that can be loaded into a table when the MAXimum argument is specified.
- *poin* ::= The minimum number of correction factors that can be loaded into a table when the MINimum argument is specified.

See Also

MEMory:TABLe:LOSS[:MAGNitude]

MEMory:TABLe:SELect

To Use the Level Correct Routine

MEMory:TABLe:SELect

MEMory:TABLe:SELect FDATtableno

The "MEMory:TABLe:SELect" command selects the level correct table where level correct data will be loaded.

The parameter is as follows:

tableno

The number of the level correct table where level correct data will be loaded. The number must be an integer from 1 to 4.

This command selects one of four level correct tables where level correct data will be loaded using the "MEMory:TABLe:FREQuency" and "MEMory:TABLe:LOSS[:MAGNitude]" commands.

If a table number entry is made that is not within the allowable range, the level correct table entry is rejected and no action is taken by the synthesizer. The table is preset at the factory to 1. Pressing the PRESET key has no effect on this command.

NOTE

The "MEMory:TABLe:SELect" command is used to select a table for data loading only. The "[SOURce[1]:]CORRection:CSET[:SELect]" command is used to select the level correct table that is used to correct power at the synthesizer RF OUTPUT connector.

Query Syntax

MEMory:TABLe:SELect?

Returned format:

FDATtableno<NL>

Where:

• *tableno* ::= The level correct table currently selected to be loaded with level correct data.

See Also

MEMory:TABLe:FREQuency

MEMory:TABLe:LOSS[:MAGNitude]
[SOURce[1]:]CORRection:CSET[:SELect]
To Use the Level Correct Routine

[SOURce[1]:]CORRection:CSET[:SELect]

[SOURce[1]:]CORRection:CSET[:SELect]FDATtableno

The "[SOURce[1]:]CORRection:CSET[:SELect]" command selects the level correct table that is used to correct power at the synthesizer RF OUTPUT connector.

The parameter is as follows:

tableno

The number of the level correct table that is used to correct power at the synthesizer RF OUTPUT connector. The number must be an integer from 1 to 4.

This command selects one of four level correct tables that are used to correct power at the synthesizer RF OUTPUT connector.

If a table number entry is made that is not within the allowable range, the level correct table entry is rejected and no action is taken by the synthesizer. Pressing the (PRESET) key selects level correct table number 1.

Notes

- The "[SOURce[1]:]CORRection:CSET[:SELect]" command is used to select the level correct table that
 is used to correct power at the synthesizer RF OUTPUT connector. The "MEMory:TABLe:SELect"
 command is used to select a table for data loading.
- 2. If you attempt to use a level correct table that has an error, an error message is generated and no correction is applied to the synthesizer RF OUTPUT connector.

[SOURce[1]:]CORRection:CSET[:SELect]

Query Syntax

 $[\ \, \texttt{SOURce} \big[\ \, \textbf{1} \, \big] : \big] \\ \texttt{CORRection:CSET} \big[: \\ \texttt{SELect} \, \big] \\ \texttt{?}$

Returned format:

FDATtableno<NL>

Where:

• *tableno* ::= The level correct table currently selected to correct power at the synthesizer RF OUTPUT connector.

See Also

MEMory:TABLe:SELect

[SOURce[1]:]CORRection:CSET:STATe [SOURce[1]:]CORRection[:STATe] To Use the Level Correct Routine

[SOURce[1]:]CORRection:CSET:STATe

The "[SOURce[1]:]CORRection:CSET:STATe" command turns level correction on or off.

The parameters are as follows:

ON

Turns level correction on.

OFF

Turns level correction off.

Level correction must be turned on using this command and all corrections must be turned on using the "[SOURce[1]:]CORRection[:STATe]" command in order to turn the level correct function on. The preset condition for this command is off.

NOTE

If you attempt to use a level correct table that has an error, an error message is generated and no correction is applied to the synthesizer RF OUTPUT connector.

[SOURce[1]:]CORRection:CSET:STATe

Query Syntax

[SOURce[1]:]CORRection:CSET:STATe?

Returned format: *state*<NL> Where:

- state := "+1" if level correction is currently turned on.
- *state* ::= "+0" if level correction is currently turned off.

See Also

[SOURce[1]:]CORRection:CSET[:SELect] [SOURce[1]:]CORRection[:STATe] To Use the Level Correct Routine

[SOURce[1]:]CORRection:FLATness[:DATA]

The "[SOURce[1]:]CORRection:FLATness[:DATA]" command sets the user frequency and level correction values. These values must be sent in frequency, level correction pairs. The input frequency range is dependent upon installed options; the level correction range is -40 dB to +40 dB.

For example:

```
CORRection: FLATness 1e9, 0.1, 2e9, 0.2, 3e9, 0.3
```

The synthesizer will sort the entered list by frequency automatically. An instrument preset has no effect on the user level correction data. Note that this mnemonic cannot be used in a macro.

The parameters are as follows:

freq, level Sets the user frequency and level correction values.

MAXimum Sets the user frequency and level correction to the

maximum allowable values.

MINimum Sets the user frequency and level correction to the minimum

allowable values.

DEFault Sets the user frequency and level correction to the default

(preset) values.

[SOURce[1]:]CORRection:FLATness[:DATA]

Query Syntax

[SOURce[1]:]CORRection:FLATness[:DATA]? MINimum
DEFault

Returned format:

freq, level < NL>

Where:

- *freq,level* ::= The current frequency and level correction values if no argument is specified.
- *freq*, *level* ::= The maximum frequency and level correction values that can be set if the MAXimum argument is specified.
- *freq,level* ::= The minimum frequency and level correction values that can be set if the MINimum argument is specified.
- *freq,level* ::= The default (preset) frequency and level correction values if the DEFault argument is specified.

See Also

[SOURce[1]:]CORRection:FLATness:POINts

[SOURce[1]:]CORRection:FLATness:POINts

[SOURce[1]:]CORRection:FLATness:POINts

| MAXimum | MINimum | DEFault |

The "[SOURce[1]:]CORRection:FLATness:POINts" command sets the number of user frequency and level correction points (or pairs).

The parameters are as follows:

points Sets the number of user frequency and level correction

points.

MAXimum Sets the number of user frequency and level correction

points to the maximum number.

MINimum Sets the number of user frequency and level correction

points to the minimum number.

DEFault Sets the number of user frequency and level correction

points to the default (preset) number.

Query Syntax

[SOURce[1]:]CORRection:FLATness:POINts? [MAXimum MINimum DEFault]

Returned format:

points<NL>

Where:

• points ::= The current number of frequency and level correction pairs if no argument is specified.

[SOURce[1]:]CORRection:FLATness:POINts

- *points* ::= The maximum number of frequency and level correction pairs that can be set if the MAXimum argument is specified.
- *points* ::= The minimum number of frequency and level correction pairs that can be set if the MINimum argument is specified.
- *points* ::= The default (preset) number of frequency and level correction pairs if the DEFault argument is specified.

See Also

[SOURce[1]:]CORRection:FLATness[:DATA]

[SOURce[1]:]CORRection[:STATe]

$$[SOURce[1]:]CORRection[:STATe] { ON OFF }$$

The "[SOURce[1]:]CORRection[:STATe]" command turns all corrections on or off.

NOTE

This command is provided for SCPI compatibility only. In this version of the synthesizer, the only correction available is level correction.

The parameters are as follows:

ON

Turns all corrections on.

OFF

Turns all corrections off.

All corrections must be turned on using this command and level corrections must be turned on using the "[SOURce[1]:]CORRection:CSET:STATe" command in order to turn the level correct function on. The preset condition for this command is off.

NOTE

If you attempt to use a level correct table that has an error, an error message is generated and no correction is applied to the synthesizer RF OUTPUT connector.

[SOURce[1]:]CORRection[:STATe]

Query Syntax

```
[\, {\tt SOURce[1]:]CORRection[:STATe}\,]?
```

Returned format:

state<NL>

Where:

- *state* ::= "+1" if all corrections are currently turned on.
- *state* ::= "+0" if all corrections are currently turned off.

See Also

[SOURce[1]:]CORRection:CSET[:SELect] [SOURce[1]:]CORRection:CSET:STATe To Use the Level Correct Routine

SYSTem:COMMunicate:PMETer:ADDRess

The "SYSTem:COMMunicate:PMETer:ADDRess" command allows you to change the HP-IB address that the synthesizer uses when communicating with an external power meter during the level correct routine.

The parameters are as follows:

address The HI

The HP-IB address of the external power meter. The valid

address range is 00 to 30 (decimal).

MAXimum

Sets the power meter HP-IB address to its maximum

allowable value.

MINimum

Sets the power meter HP-IB address to its minimum

allowable value.

NOTE

The "SYSTem:COMMunicate:PMETer:ADDRess" command sets the address that the synthesizer will use when communicating with the external power meter or when receiving data from the external power meter during the level correct routine. This command does not set the address at the power meter.

The external power meter HP-IB address set at the factory is 13. Pressing the PRESET key or sending the *RST or SYSTem:PRESet commands will not modify the address.

SYSTem:COMMunicate:PMETer:ADDRess

Query Syntax

SYSTem:COMMunicate:PMETer:ADDRess? | MAXimum | MINimum

Returned format:

address<NL>

Where:

- address ::= The current external power meter HP-IB address when no optional argument is specified.
- *address* ::= The maximum allowable power meter HP-IB address when the MAXimum argument is specified.
- *address* ::= The minimum allowable power meter HP-IB address when the MINimum argument is specified.

See Also

To Use the Level Correct Routine

2f

Macro Commands

Macro Commands

This sub-chapter contains detailed information on all programming commands pertaining to macros.

*DMC (Define Macro Command)

*DMC "name","commands"

The "*DMC" command allows you to create a macro that consists of any combination of synthesizer programming commands.

The parameters are as follows:

name The name for the macro. The name can consist of

upper-case or lower-case alpha characters, numeric characters 0 through 9, or the underscore (_). The name

must begin with an alpha character and can be up to $255\,$

characters long.

commands The synthesizer programming commands to be defined by

the macro name. This must be IEEE String Program Data or Block Program Data format and can be up to 255 characters

long.

Before macros that have been created by the *DMC command can be used, they must be enabled using the *EMC command.

- *EMC
- *GMC?
- *LMC?
- *PMC
- *RMC

*EMC (Enable Macros)

*EMC
$$\left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\}$$

The "*EMC" command enables or disables macros created with the "*DMC" command.

The parameters are as follows:

- O Disables macros created with the "*DMC" command.
- 1 Enables macros created with the "*DMC" command.

The preset condition for the "*EMC" command is "0" (disabled).

Query Syntax

*EMC?

Returned format:

state<NL>

Where:

• state := "+0" if macros are disabled or "+1" if macros are enabled.

- *DMC
- *GMC?
- *LMC?
- *PMC
- *RMC

*GMC? (Get Macro Contents Query)

*GMC? "name"

The "*GMC" query returns the commands that are in a given macro defined by the "*DMC" command.

The parameter is as follows:

name

The name of the macro for which you want to get the list of commands. This macro must have been previously defined with the "*DMC" command.

The synthesizer returns the list of macro commands in IEEE 488.2 Definite Length Arbitrary Block Response Data format.

- *DMC
- *EMC
- *LMC?
- *PMC
- *RMC

*LMC? (List Macro Query)

*LMC?

The "*LMC?" query returns a listing of the names of all macros that have been defined by the "*DMC" command.

In response to the "*LMC?" query, the synthesizer will return a list of macro names defined. The macro names will be returned as string data separated by commas.

If no macros have been defined, the synthesizer will return the empty string ("") in response to the "*LMC?" query.

- *DMC
- *EMC
- *GMC?
- *PMC
- *RMC

MEMory:FREE:MACRo?

MEMory: FREE: MACRo?

The "MEMory:FREE:MACRo?" query returns two numbers. The first is the number of bytes available for use in defining new macros. The second is the number of bytes currently being used for existing macros.

See Also

- *DMC
- *EMC
- *GMC?
- *PMC
- *RMC

*PMC (Purge Macros Command)

*PMC

The "*PMC" command purges all macros that have been defined.

The "*PMC" command purges all defined macros. Purged macros are erased from memory and can not be recovered. To selectively purge certain macros, use the "*RMC" command.

See Also

- *DMC
- *EMC
- *GMC?
- *LMC?
- *RMC

*RMC (Remove Macro Command)

*RMC "name"

The "*RMC" command selectively purges a macro from the synthesizer memory.

The parameter is as follows:

name

The name of the macro that you want to purge. This macro must have been previously defined with the "*DMC" command.

The "*RMC" command purges only the macro whose name is stated with the command. The purged macro is erased from memory and can not be recovered. Only one macro can be purged per "*RMC" command. To purge all defined macros with one command, use the "*PMC" command.

If the "*RMC" command is sent and the macro to be purged does not exist, an error message will be generated.

See Also

- *DMC
- *EMC
- *GMC?
- *LMC?
- *PMC

2g

Miscellaneous Commands

Miscellaneous Commands

This sub-chapter contains detailed information on all miscellaneous programming commands.

DISPlay[:WINDow][:STATe]

$$\mathtt{DISPlay}\big[:\mathtt{WINDow}\big]\big[:\mathtt{STATe}\big]\left\{ \begin{smallmatrix} \mathtt{ON} \\ \mathtt{OFF} \end{smallmatrix} \right\}$$

The "DISPlay[:WINDow][:STATe]" command turns the fluorescent displays and LED annunciators on and off.

The parameters are as follows:

ON

Turns the fluorescent displays and LED annunciators on.

OFF

Turns the fluorescent displays and LED annunciators off.

The display state is stored in the instrument state registers along with other instrument state data, so if sensitive instrument settings are stored to a register, the settings are not revealed when the register is recalled. The preset condition for the "DISPlay[:WINDow][:STATe]" command is ON.

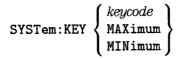
NOTE

Once the display has been turned off, cycling the LINE POWER switch off and then on will not restore the display.

DISPlay[:WINDow][:STATe]

Query Syntax

 ${\tt DISPlay[:WINDow][:STATe]?}$


Returned format:

state<NL>

Where:

- *state* ::= "+1" if the fluorescent displays and LED annunciators are currently turned on.
- *state* ::= "+0" if the fluorescent displays and LED annunciators are currently turned off.

SYSTem:KEY

The "SYSTem:KEY" command simulates pressing a front panel key.

The parameters are as follows:

keycode The key code of the key to be pressed. The valid key code

range is 0 to 62.

MAXimum Sets the keycode to its maximum allowable value.

MINimum Sets the keycode to its minimum allowable value.

Note that the key code represents the front panel key to be pressed. There is no unique key code for shifted functions and special functions. Note also that key codes can not simply be strung together in a command. If more than one key code is to appear on the same command line, the subsequent key codes must be preceded by ":KEY".

The valid key codes are shown in the following table:

SYSTem:KEY

Table 2g-1. Synthesizer Key Codes

Key Name	Key Code	Key Name	Key Code
SHIFT	0	$\overline{\mathrm{INT}\;\mathrm{RATE}}$ (FM/ ϕ M Key Group)	29 ²
(PRESET)	1	TRIG ON/OFF	30
INT LEVEL	2	PRI	31
(LOG AM ON/OFF)	31	(POWER LEVEL)	32
LOG/LIN ON/OFF	3 ²	9	33
MSG	4	dB	34
RECALL	5	dBm	34
EXT DIODE)	6	GHz	34
(INT DEPTH)	7	ms	34
LOCAL	8		37
SPCL	9		38
EXT METER	10	4 5	39
(12	[5]	40
7	13	6	41
[7] [8]	14	SPCL ON	42
(FM ON/OFF)	201	MHZ	42
FM/\phi ON/OFF	202	us	42
EXT ON/OFF)	21		45
(DELAY)	22	STEP SIZE	46
(FREQ)	23		47
INT DEV (FM/φM Key Group)	242	2	48
(INT ON/OFF)	25	3	49
(WIDTH)	26	kHz	50
INT RATE (IAM Key Group)	28 ²		

^{1 83731}A/32A

^{2 837318/328}

Table 2g-1. Synthesizer Key Codes (continued)

Key Name	Key Code	Key Name	Key Code
ns	50	Hz	58
SPCL OFF	50	ENTER	58
RF ON/OFF	53	rad	58
(BACK SPACE)	54	%	58
0	55	Clockwise Knob Rotation	61 ¹ 62 ²
Ō	56	Counterclockwise Knob Rotation	62 ²
	57		

- 1 Sending this key code simulates rotating the knob clockwise one step by its finest resolution.
- 2 Sending this key code simulates rotating the knob counterclockwise one step by its finest resolution.

If a key code is sent that is between 0 and 62, but does not appear in the table, it will be ignored.

Query Syntax

SYSTem:KEY? MAXimum MINimum

Returned format:

keycode<NL>

Where:

- keycode ::= The last key pressed if no optional argument is specified. If
 1 is returned, no key has been pressed since the synthesizer has been powered up or preset.
- *keycode* ::= The maximum allowable key code when the MAXimum argument is specified.
- *keycode* ::= The minimum allowable key code when the MINimum argument is specified.

Miscellaneous Commands

2h

Modulation Commands

Modulation Commands

This sub-chapter contains detailed information on all programming commands pertaining to modulation control.

[SOURce[1]:]AM[:DEPTh]

```
 \left[ \texttt{SOURce[1]:]AM[:DEPTh} \right] \left\{ \begin{matrix} \textit{depth} \\ \texttt{MAXimum} \\ \texttt{MINimum} \\ \texttt{UP} \\ \texttt{DOWN} \\ \texttt{DEFault} \end{matrix} \right.
```

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM[:DEPTh]" command selects the AM depth when in internal logarithmic or linear AM mode. When a numeric value is sent with no suffix (i.e., dBm or PCT), the logarithmic AM depth parameter is set. When a suffix is used, then the appropriate linear or logarithmic parameter is set. The linear and logarithmic parameters are independent, but are both controlled by this command.

The parameters are as follows:

depth Sets the internal logarithmic AM depth. In linear mode,

the allowed range is 0 to 100% with 0.1% resolution. In logarithmic mode, the allowed range is 0 to 60 dB with

0.01 dB resolution.

MAXimum Sets the internal AM depth to the maximum allowable value.

MINimum Sets the internal logarithmic AM depth to the minimum

allowable value.

UP Increases the internal logarithmic AM depth by the current

logarithmic AM depth increment value.

DOWN Decreases the internal logarithmic AM depth by the current

logarithmic AM depth increment value.

[SOURce[1]:]AM[:DEPTh]

DEFault

Sets the internal logarithmic and linear AM depth to its default (preset) value.

NOTE

When the internal AM depth is set between 30 dB and 60 dB, the entry resolution is 0.01 dB, however, the hardware resolution might be slightly greater than 0.01 dB. The hardware resolution will always be less than 0.015 dB.

Query Syntax

Returned format:

depth < NL >

Where:

- *depth* ::= The current internal linear or logarithmic AM depth is dependent upon the setting of AM:TYPE.
- *depth* ::= The maximum internal logarithmic AM depth that can be set if the MAXimum argument is specified.
- *depth* ::= The minimum internal logarithmic AM depth that can be set if the MINimum argument is specified.
- *depth* ::= The default internal logarithmic AM depth if the DEFault argument is specified.

See Also

[SOURce[1]:]AM[:DEPTh]:STEP [SOURce[1]:]AM:TYPE

[SOURce[1]:]AM[:DEPTh]:STEP

[SOURce[1]:]AM[:DEPTh]:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM[:DEPTh]:STEP" command selects the increment value for internal logarithmic or linear AM depth in a manner analogous to AM depth.

The parameters are as follows:

incr	Sets the increment value for internal logari	thmic or linear

AM depth. In logarithmic mode, the allowable range for the parameter is 0.01 dB to 60 dB; in linear mode, the allowable

range is 0.1% to 100%.

MAXimum Sets the logarithmic AM depth increment value to its

maximum allowable value.

MINimum Sets the logarithmic AM depth increment value to its

minimum allowable value.

DEFault Sets the logarithmic AM depth increment value to its default

(preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]AM[:DEPTh]" command, the internal logarithmic or linear AM depth will be increased or decreased by a step size set with the "[SOURce[1]:]AM[:DEPTh]:STEP" command.

[SOURce[1]:]AM[:DEPTh]:STEP

If a logarithmic or linear AM depth increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the internal logarithmic AM depth increment value is 3 dB and the resolution is 0.01 dB.

Query Syntax

Returned format:

incr<NL>

Where:

- *incr* ::= The current internal logarithmic or linear AM depth increment value if no argument is specified.
- *incr* ::= The maximum internal logarithmic AM depth increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum internal logarithmic AM depth increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) internal logarithmic AM depth increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]AM[:DEPTh]

[SOURce[1]:]AM:INT:FREQ

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM:INT:FREQ" command sets the internal AM modulation rate.

The parameters are as follows:

freq Sets the internal AM modulation rate. The allowable range

for the parameter is 0.5 Hz to 100 kHz with a resolution of

0.5 Hz. The default (preset) value is 5 kHz.

MAXimum Sets the internal AM modulation rate to its maximum

allowable value.

MINimum Sets the internal AM modulation rate to its minimum

allowable value.

DEFault Sets the internal AM modulation rate to its default (preset)

value of 5 kHz.

If an internal AM modulation rate entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. If internal modulation overdrive mode is on, the upper limit is set to 1 MHz.

Query Syntax

[SOURce[1]:]AM:INT:FREQ? MINimum DEFault]

Returned format:

freq<NL>

Where:

- *freq* ::= The current internal AM modulation rate if no argument is specified.
- *freq* ::= The maximum internal AM modulation rate that can be set if the MAXimum argument is specified.
- *freq* ::= The minimum internal AM modulation rate that can be set if the MINimum argument is specified.
- freq ::= The default (preset) internal AM modulation rate if the DEFault argument is specified.

See Also

[SOURce[1]:]AM:INT:FREQ:STEP [SOURce[2]:]FREQuency

[SOURce[1]:]AM:INT:FREQ:STEP

[SOURce[1]:]AM:INT:FREQ:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM:INT:FREQ:STEP" command selects the increment value for the internal AM modulation rate.

The parameters are as follows:

incr	Sate tha	increment	arriev	for the	internal	ΔM	modulation
7:111:3	Dels life	пистепцень.	VAITIE	101 1.116	HILEITIAL	AIVI	THOURIALION

rate. The allowable range for the parameter is 0.5 Hz to 99.9995 kHz with a resolution of 0.5 Hz. The default (preset)

value is 100 Hz.

MAXimum Sets the internal AM modulation increment value to its

maximum allowable value.

MINimum Sets the internal AM modulation increment value to its

minimum allowable value.

DEFault Sets the internal AM modulation increment value to its

default (preset) value of 100 Hz.

If an internal AM modulation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.

Query Syntax

[SOURce[1]:]AM:INT:FREQ:STEP? MAXimum DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current internal AM modulation increment value if no argument is specified.
- *incr* ::= The maximum internal AM modulation increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum internal AM modulation increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) internal AM modulation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]AM:INT:FREQ [SOURce[2]:]FREQ:STEP

[SOURce[1]:]AM:INT:FUNC

[SOURce[1]:]AM:INT
:FUNC[SINusoid|SQUAre|TRIAngle|RAMP|UNIForm|GAUSSian]

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM:INT:FUNC" command selects the waveform of the internal AM modulation generator. The default (preset) waveform is SINusoid.

Query Syntax

[SOURce[1]:]AM:INT:FUNC?

Returned format:

waveform<NL>

Where:

- waveform ::= SINUSOID if the currently selected waveform is a sinusoidal waveform.
- *waveform* ::= SQUARE if the currently selected waveform is a square waveform.
- waveform ::= TRIANGLE if the currently selected waveform is a triangle waveform.
- waveform ::= RAMP if the currently selected waveform is a ramp waveform.

- ullet waveform ::= UNIFORM if the currently selected waveform is a uniform waveform.
- waveform ::= GAUSSIAN if the currently selected waveform is a gaussian noise waveform.

See Also

SOURce2:FUNC

[SOURce[1]:]AM:SENSitivity

The "[SOURce[1]:]AM:SENSitivity" command sets linear AM sensitivity if the AM:TYPE selection is LINear. The exponential AM sensitivity can only be set to -10 dB/Volt when the AM:TYPE selection is EXPonential.

The parameters are as follows:

sens Sets the linear AM sensitivity in HP 83731B/32B models

only. The allowable range for the parameter is 30%/Volt to 100%/Volt. The default (preset) value is 30%/Volt. The exact suffix syntax is PCT/VOLT for linear mode; dB/Volt for

exponential mode.

MAXimum Sets the AM modulation rate to its maximum allowable

value.

MINimum Sets the AM modulation rate to its minimum allowable

value.

DEFault Sets the AM sensitivity to its default (preset) value or

30%/Volt (linear) and -10 dB/Volt (exponential).

If a linear AM sensitivity entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. If an exponential AM sensitivity entry is made other than -10 dB/Volt, an error message will be generated and the AM sensitivity will remain set to -10 dB/Volt.

Query Syntax

[SOURce[1]:]AM:SENSitivity? MINimum DEFault]

Returned format:

sens<NL>

Where:

- sens ::= The current AM sensitivity value if no argument is specified.
- sens ::= The maximum AM sensitivity value that can be set if the MAXimum argument is specified.
- *sens* ::= The minimum AM sensitivity value that can be set if the MINimum argument is specified.
- sens ::= The default (preset) AM sensitivity value if the DEFault argument is specified.

See Also

[SOURce[1]:]AM:TYPE

[SOURce[1]:]AM:SOURce

NOTE

This command is only available with Option 1E2 installed. Otherwise the parameter is permanently set to EXTernal.

The "[SOURce[1]:]AM:SOURce" command sets the amplitude modulation source to either the internal (feed) source or the external source.

The parameters are as follows:

FEED Selects the internal amplitude modulation source.

INTernal Selects the internal amplitude modulation source.

EXTernal Selects the external amplitude modulation source.

When the FEED or INTernal parameter is set with this command, the synthesizer will use the internal AM . When the EXTernal parameter is set with this command, the external amplitude modulation source is chosen, allowing amplitude modulation of the synthesizer with an external signal applied to the front panel AM IN connector.

When the synthesizer is set to the preset state, the amplitude modulation source is set to external.

Query Syntax

[SOURce[1]:]AM:SOURce?

Returned format:

source<NL>

Where:

- *source* ::= "FEED" if the amplitude modulation source is the internal feed source.
- *source* ::= "EXT" if the amplitude modulation source is the external source.

[SOURce[1]:]AM:STATe

$$[\, {\tt SOURce[\,1\,]:\,] \, {\tt AM:STATe}} \, \left\{ \begin{smallmatrix} {\tt ON} \\ {\tt OFF} \end{smallmatrix} \right\}$$

The "[SOURce[1]:]AM:STATe" command turns amplitude modulation on or off.

The parameters are as follows:

ON

Turns amplitude modulation on.

OFF

Turns amplitude modulation off.

From preset, when AM is turned on, LOG AM will be selected since the preset value of AM:TYPE is EXPonential, and thus the LOG AM annunciator will become lit. If AM:TYPE is selected to be LINear, the LIN AM annunciator will become lit.

Query Syntax

```
[SOURce[1]: AM:STATe?
```

Returned format:

state<NL>

Where:

- *state* ::= "+1" if AM is currently turned on.
- state ::= "+0" if AM is currently turned off.

See Also

Connectors [SOURce[1]:]AM:TYPE

[SOURce[1]:]AM:TYPE

[SOURce[1]:]AM:TYPE { EXPonential LINear }

The "[SOURce[1]:]AM:TYPE" command is used to set the amplitude modulation type.

The parameters are as follows:

EXPonential

Exponential (logarithmic) amplitude modulation will be

selected.

LINear

Linear amplitude modulation will be selected.

Query Syntax

[SOURce[1]: AM:TYPE?

Returned format:

EXP<NL> LIN<NL>

See Also

[SOURce[1]:]AM:STATe

[SOURce[1]:]FM:COUPling

$$[\, {\tt SOURce[1]:]FM:COUPling} \, \left\{ \begin{smallmatrix} {\tt AC} \\ {\tt DC} \end{smallmatrix} \right\}$$

The "[SOURce[1]:]FM:COUPling" command selects either AC or DC coupling for the FM/ ϕ M IN connector.

The parameters are as follows:

AC

AC-couples the FM/ ϕ M IN connector.

DC

DC-couples the FM/ ϕ M IN connector.

When the "[SOURce[1]:]FM:COUPLing" command is sent, the pertinent annunciator (either AC FM or DC FM) will be lit to indicate the current status of FM coupling (when FM is turned on).

When DC FM is off, the synthesizer circuitry is configured so that the FM/ ϕ M IN connector will accept a modulating signal with a minimum rate of 1 kHz. When DC FM is on, the FM/ ϕ M IN connector will accept a modulating signal with a minimum rate of 0 Hz (DC). When the synthesizer is set to the preset state, FM coupling is set to AC.

Advantages of DC FM

When DC FM is selected, the modulation index is unlimited.

 $modulation \ index = \frac{peak \ deviation}{modulation \ rate}$

Where modulation rate can range down to 0 Hz (DC).

Disadvantages of DC FM

When DC FM is enabled, the synthesizer internal phase locked loop circuits are disabled, causing the output frequency accuracy and stability to be degraded.

Query Syntax

```
[SOURce[1]:]FM:COUPling?
```

Returned format:

coupl<NL>

Where:

- coupl ::= "AC" if the FM/ ϕ M IN connector is currently AC-coupled.
- coupl ::= "DC" if the FM/ ϕ M IN connector is currently DC-coupled.

See Also

Connectors

[SOURce[1]:]FM:SENSitivity?

[SOURce[1]:]FM:STATe

[SOURce[1]:]FM[:DEViation]

$$[\texttt{SOURce[1]:]FM[:DEViation}] \left\{ \begin{matrix} \textit{dev} \\ \texttt{MAXimum} \\ \texttt{MINimum} \\ \texttt{UP} \\ \texttt{DOWN} \\ \texttt{DEFault} \end{matrix} \right.$$

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]FM[:DEViation]" command selects the FM deviation when in internal FM mode.

The parameters are as follows:

dev Sets the internal FM deviation. The allowable range for the

parameter is 0 Hz to 10 MHz.

MAXimum Sets the internal FM deviation to the maximum allowable

value.

MINimum Sets the internal FM deviation to the minimum allowable

value.

UP Increases the internal FM deviation by the current FM

deviation increment value.

DOWN Decreases the internal FM deviation by the current FM

deviation increment value.

DEFault Sets the internal FM deviation to its default (preset) value.

If an FM deviation entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to

[SOURce[1]:]FM[:DEViation]

either its upper or lower limit. The preset value for FM deviation is $10\ kHz$ and the resolution is $0.01\ Hz$.

If internal modulation overdrive is set on, the maximum upper limit allowed is 15 MHz. FM deviation will not be automatically increased as the carrier frequency is returned to a larger value. FM deviation will automatically be decreased if the current value exceeds the limits specified in Table 2h-1 as the CW frequency is decreased.

Table 2h-1. Maximum FM Deviation in Internal FM Mode

Frequency	Maximum FM Deviation
10 Mhz to < 16 MHz	39.1 kHz
16 MHz to < 32 MHz	78.1 kHz
32 MHz to < 64 MHz	156 kHz
64 MHz to < 128 MHz	312.5 kHz
128 MHz to < 256 MHz	625 kHz
256 MHz to < 500 MHz	1.25 MHz
500 MHz to < 1 GHz	2.5 MHz
1 GHz to $<$ 2 GHz	5 MHz
2 GHz to 20 GHz	10 MHz

Query Syntax

[SOURce[1]:]FM[:DEViation]? MAXimum MINimum DEFault

Returned format:

dev < NL >

Where:

- ullet dev ::= The current internal FM deviation if no argument is specified.
- dev ::= The maximum internal FM deviation that can be set if the MAXimum argument is specified.
- *dev* ::= The minimum internal FM deviation that can be set if the MINimum argument is specified.
- dev ::= The default internal FM deviation if the DEFault argument is specified.

See Also

[SOURce[1]:]FM[:DEViation]:STEP [SOURce[1]:]FM:TYPE

[SOURce[1]:]FM[:DEViation]:STEP

[SOURce[1]:]FM[:DEViation]:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]FM[:DEViation]:STEP" command selects the increment value for internal FM deviation.

The parameters are as follows:

incr Sets the increment value for internal FM deviation. The

allowable range for the parameter is 0.01 Hz to 10 MHz.

MAXimum Sets the FM deviation increment value to its maximum

allowable value.

MINimum Sets the FM deviation increment value to its minimum

allowable value.

DEFault Sets the FM deviation increment value to its default (preset)

value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]FM[:DEViation]" command, the internal FM deviation will be increased or decreased by a step size set with the "[SOURce[1]:]FM[:DEViation]:STEP" command.

If an FM deviation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset

value for the internal FM deviation increment value is $100 \ \text{kHz}$ and the resolution is $0.01 \ \text{Hz}$.

Query Syntax

Returned format:

incr<NL>

Where:

- *incr* ::= The current internal FM deviation increment value if no argument is specified.
- *incr* ::= The maximum internal FM deviation increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum internal FM deviation increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) internal FM deviation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FM[:DEViation]

[SOURce[1]:]FM:INT:FREQ

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]FM:INT:FREQ" command sets the FM internal modulation rate.

The parameters are as follows:

freq Sets the FM internal modulation rate. The allowable range

for the parameter is 1 kHz to 1 MHz with a resolution of

0.5 Hz.

MAXimum Sets the FM internal modulation rate to its maximum

allowable value.

MINimum Sets the FM internal modulation rate to its minimum

allowable value.

DEFault Sets the FM internal modulation rate to its default (preset)

value of 100 kHz.

If an FM internal modulation rate entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. If internal modulation overdrive mode is on, or if FM COUPle mode is on, the lower limit is 0.5 Hz.

Query Syntax

[SOURce[1]:]FM:INT:FREQ? MINimum
DEFault

Returned format:

freq<NL>

Where:

- *freq* ::= The current FM internal modulation rate if no argument is specified.
- freq ::= The maximum FM modulation rate that can be set if the MAXimum argument is specified.
- freq ::= The minimum FM modulation rate that can be set if the MINimum argument is specified.
- freq ::= The default (preset) FM modulation rate if the DEFault argument is specified.

See Also

[SOURce[1]:]FM:INT:FREQ:STEP [SOURce[3]:]FREQ

[SOURce[1]:]FM:INT:FREQ:STEP

[SOURce[1]:]FM:INT:FREQ:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]FM:INT:FREQ:STEP" command selects the increment value for the FM internal modulation rate.

The parameters are as follows:

incr	Sets the	increment	value	for the	FM	internal	modulation

rate. The allowable range for the parameter is 0.5 Hz to 1 MHz with a resolution of 0.5 Hz. The default (preset) value

is 1 kHz.

MAXimum Sets the FM internal modulation increment value to its

maximum allowable value.

MINimum Sets the FM internal modulation increment value to its

minimum allowable value.

DEFault Sets the FM internal modulation increment value to its

default (preset) value of 1 kHz.

If an FM internal modulation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.

Query Syntax

[SOURce[1]:]FM:INT:FREQ:STEP? MINimum DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current FM internal modulation increment value if no argument is specified.
- *incr* ::= The maximum FM internal modulation increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum FM internal modulation increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) FM internal modulation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FM:INT:FREQ

[SOURce[1]:]FM:INT:FUNC

[SOURce[1]:]FM:INT:FUNC[SINusoid|SQUAre|TRIAngle|RAMP|UNIForm|GAUSSian]

NOTE

This command is only available with Option 1E2 installed.

The "[SOURce[1]:]FM:INT:FUNC" command selects the waveform of the internal FM modulation generator. The default (preset) waveform is SINusoid.

Query Syntax

[SOURce[1]:]FM:INT:FUNC?

Returned format:

waveform<NL>

Where:

- waveform ::= SINUSOID if the currently selected waveform is a sinusoidal waveform.
- waveform ::= SQUARE if the currently selected waveform is a square waveform.
- waveform ::= TRIANGLE if the currently selected waveform is a triangle waveform.
- waveform ::= RAMP if the currently selected waveform is a ramp waveform.

- waveform ::= UNIFORM if the currently selected waveform is a uniform noise waveform.
- waveform ::= GAUSSIAN if the currently selected waveform is a gaussian noise waveform.

See Also

SOURce3:FUNC

[SOURce[1]:]FM:SENSitivity

FM sensitivity is a ratio of the frequency deviation from the carrier per unit change of the external modulating signal amplitude. In the synthesizer, sensitivity is displayed as the carrier deviation per volt. Note that FM sensitivity is selectable only in ranges determined by the chosen carrier frequency.

sens Sets the FM sensitivity. The allowable range for the

parameter is shown in Table 2h-2.

MAXimum Sets the FM sensitivity to the maximum allowable value.

MINimum Sets the FM sensitivity to the minimum allowable value.

DEFault Sets the internal FM deviation to its default (preset) value of

5 MHz/V at 3 GHz CW frequency.

The FM sensitivity is coupled to the CW frequency. As a result, any entered value will automatically adjust to the closest preset value for the given CW frequency. Refer to Table 2h-2.

Table 2h-2. FM Sensitivity to CW Frequency

	10 MHz-16 MHz	16 MHz-64 MHz	64 MHz-256 MHz	256 MHz-1 GHz	1 GHz-20 GHz
Range 1	78.125 kHz/V	156.25 kHz/V	625 kHz/V	2.5 MHz/V	10 MHz/V
Range 2	39062 Hz/V	78.125 kHz/V	312.5 kHz/V	1.25 MHz/V	5 MHz/V
Range 3	23437 Hz/V	46.875 kHz/V	187.5 kHz/V	750 kHz/V	3 kHz/V
Range 4	7812 Hz/V	15.625 kHz/V	62.5 kHz/V	250 kHz/V	1 MHz/V
Range 5	2343 Hz/V	4.687 kHz/V	18.75 kHz/V	75 kHz/V	300 kHz/V
Range 6	781 Hz/V	1562 Hz/V	6.25 kHz/V	25 kHz/V	100 kHz/V
Range 7	234 Hz/V	468 Hz/V	1.875 kHz/V	7.5 kHz/V	30 kHz/V

NOTE

HP 83731A/32A models have only one value for FM sensitivity of 5 MHz/V (i.e., Range 2).

Query Syntax

[SOURce[1]:]FM:SENSitivity? MINimum DEFault

Returned format:

sens < NL >

[SOURce[1]:]FM:SENSitivity

Where:

- sens ::= The current FM sensitivity if no argument is specified.
- *sens* ::= The maximum FM sensitivity that can be obtained when the MAXimum argument is specified.
- *sens* ::= The minimum FM sensitivity that can be obtained when the MINimum argument is specified.
- sens ::= The preset FM sensitivity when the DEFault argument is specified.

See Also

Connectors

[SOURce[1]:]FM:STATe

SOURce[1]:]FREQuency:MULTiplier

UNIT:FREQuency

[SOURce [1]:] FM: SOURce

NOTE

This command is only available with Option 1E2 installed. Otherwise the parameter is permanently set to EXTernal.

The "[SOURce[1]:]FM:SOURce" command sets the frequency modulation source to either the internal (feed) source or the external source.

The parameters are as follows:

FEED Selects the internal frequency modulation source.

INTernal Selects the internal frequency modulation source.

EXTernal Selects the external frequency modulation source.

When the FEED or INTernal parameter is sent with this command, the synthesizer will use the internal FM source. When the EXTernal parameter is sent with the command, the external frequency modulation source is chosen, allowing frequency modulation of the synthesizer with an external signal applied to the front panel FM/ ϕ M IN connector.

When the synthesizer is set to the preset state, the frequency modulation source is set to EXTernal.

[SOURce[1]:]FM:SOURce

Query Syntax

[SOURce[1]:]FM:SOURce?

Returned format:

source<NL>

Where:

- *source* ::= "FEED" if the frequency modulation source is the internal feed source
- *source* ::= "EXT" if the frequency modulation source is the external source.

[SOURce[1]:]FM:STATe

$$[SOURce[1]:]FM:STATe { ON OFF }$$

The "[SOURce[1]:]FM:STATe" command turns frequency modulation on or off.

The parameters are as follows:

ON

Turns frequency modulation on.

OFF

Turns frequency modulation off.

When frequency modulation is turned on, either the AC FM or DC FM annunciator will be lit, depending on whether or not FM coupling has been set to AC or DC. When the synthesizer is set to the preset state, frequency modulation is turned off.

Query Syntax

[SOURce[1]:]FM:STATe?

Returned format:

state<NL>

Where:

- state := "+1" if FM is currently turned on.
- state ::= "+0" if FM is currently turned off.

NOTE

FM:STATE and PM:STATE are mutually exclusive. Only one can be on at any given time.

[SOURce[1]:]FM:STATe

See Also

Connectors
[SOURce[1]:]FM:COUPling
[SOURce[1]:]FM:SENSitivity?

[SOURce[1]:]MODulation:AOFF

[SOURce[1]: MODulation: AOFF

The "[SOURce[1]:]MODulation:AOFF" command turns all modulations (AM, FM, PM, and pulse modulation) off.

The "[SOURce[1]:]MODulation:AOFF" command turns all modulations off. There is no method for turning all modulations on using this command. To turn all modulations on, the "[SOURce[1]:]MODulation:STATe" command or the individual modulation state commands must be used.

See Also

[SOURce[1]:]AM:STATe

[SOURce[1]:]FM:STATe

[SOURce[1]:]MODulation:STATe

[SOURce[1]:]PULM:STATe

[SOURce[1]:]PM:STATe

[SOURce[1]:]MODulation:OVDR

SOURce[1]: MODulation: OVDR

NOTE

This command is only available on HP 83731B/32B models with Option 1E2.

The "[SOURce[1]:]MODulation:OVDR" command turns internal modulation overdrive range on and off. This command allows several internal modulation features to be set to values not normally allowed. These operation states may be out of specifications.

See Also

[SOURce[1]:]FM:[DEViation] [SOURce[1]:]FM:INT:FREQ [SOURce[1]:]AM:INT:FREQ

[SOURce[1]:]PM:COUPling

NOTE

This command is only available with Option 800 installed.

The "[SOURce[1]:]PM:COUPling" command selects either AC or DC coupling for the FM/ ϕ M IN connector.

The parameters are as follows:

AC

AC couples the FM/ ϕ M IN connector.

DC

DC couples the FM/ ϕ M IN connector.

NOTE

This feature is only applicable in external mode.

When the synthesizer is set to the preset state, PM coupling is set to AC.

[SOURce[1]:]PM:COUPling

Query Syntax

```
[SOURce[1]:]PM:COUPling?
```

Returned format:

coupl<NL>

Where:

- coupl ::= "AC" if the FM/ ϕ M IN connector is currently AC-coupled.
- coupl ::= "DC" if the FM/ ϕ M IN connector is currently DC-coupled.

See Also

Connectors
[SOURce[1]:]PM:SENSitivity?
[SOURce[1]:]PM:STATe

[SOURce[1]:]PM[:DEViation]

$$[SOURce[1]:]PM[:DEViation] \begin{cases} dev \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM[:DEViation]" command selects the Phase Modulation (PM) deviation when in internal PM mode.

The parameters are as follows:

dev Sets the internal PM deviation. The allowable range for the

parameter is 0 rads to 200 rads.

MAXimum Sets the internal PM deviation to the maximum allowable

value.

MINimum Sets the internal PM deviation to the minimum allowable

value.

DEFault Sets the internal PM deviation to its default (preset) value of

3 rads.

If a PM deviation entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. The preset value for PM deviation is 3 rads and the resolution is 10 mrads.

For PM rates of 30 kHz or less, the maximum deviation is defined by the high range. Refer to Table 2h-3.

[SOURce[1]:]PM[:DEViation]

Table 2h-3.

Maximum Deviation

Defined As A Function of PM:INT:FREQ

	PM:INT:FREQ		
Range	<30 kHz	>30 kHz	
10 MHz to 16 MHz	.78125 rads	15.625 mrads	
16 MHz to 32 MHz	1.625 rads	31.25 mrads	
32 MHz to 64 MHz	3.125 rads	62.5 mrads	
64 MHz to 128 MHz	6.25 rads	125 mrads	
128 MHz to 256 MHz	12.5 rads	250 mrads	
256 MHz to 500 MHz	25 rads	500 mrads	
500 MHz to 1 GHz	50 rads	1 rad	
1 GHz to 2 GHz	100 rads	2 rads	
2 GHz to 20 GHz	200 rads	4 rads	

NOTE

If PM:INT:FREQ is above 30 kHz, and PM:DEV is set above what is allowed by Table 2h-3, PM:INT:FREQ will be bumped downwards to 30 kHz.

Query Syntax

[SOURce[1]:]PM[:DEViation]? [MAXimum MINimum DEFault

Returned format:

dev < NL >

Where:

- dev ::= The current internal PM deviation if no argument is specified.
- *dev* ::= The maximum internal PM deviation that can be set if the MAXimum argument is specified.
- dev ::= The minimum internal PM deviation that can be set if the MINimum argument is specified.
- dev ::= The default internal PM deviation if the DEFault argument is specified.

See Also

[SOURce[1]:]PM[:DEViation]:STEP

[SOURce[1]:]PM[:DEViation]:STEP

[SOURce[1]:]PM[:DEViation]:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM[:DEViation]:STEP" command selects the increment value for internal FM deviation.

The parameters are as follows:

incr Sets the increment value for internal PM deviation. The

allowable range for the parameter is 10 mrads to 10 rads.

MAXimum Sets the PM deviation increment value to its maximum

allowable value.

MINimum Sets the PM deviation increment value to its minimum

allowable value.

DEFault Sets the PM deviation increment value to its default (preset)

value.

If a PM deviation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The default (preset) value for the internal PM deviation increment value is 1 rad and the resolution is 10 mrads.

Query Syntax

[SOURce[1]:]PM[:DEViation]:STEP[:INCRement]? MINimum
DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current internal PM deviation increment value if no argument is specified.
- *incr* ::= The maximum internal PM deviation increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum internal PM deviation increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) internal PM deviation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PM[:DEViation]

[SOURce[1]:]PM:INT:FREQ

NOTE

This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:INT:FREQ" command sets the PM internal modulation rate.

The parameters are as follows:

freq Sets the PM internal modulation rate. The allowable range

for the parameter is 0.5 Hz to 1 MHz with a resolution of

0.5 Hz.

MAXimum Sets the PM internal modulation rate to its maximum

allowable value.

MINimum Sets the PM internal modulation rate to its minimum

allowable value.

DEFault Sets the PM internal modulation rate to its default (preset)

value of 10 kHz.

If a PM internal modulation rate entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.

NOTE

If PM:DEV is currently in high range (see Table 2h-3), and PM:INT:RATE is set to above 30 kHz, PM:DEV will be bumped downward.

Query Syntax

Returned format:

freq<NL>

Where:

- *freq* ::= The current PM internal modulation rate if no argument is specified.
- freq ::= The maximum PM modulation rate that can be set if the MAXimum argument is specified.
- *freq* ::= The minimum PM modulation rate that can be set if the MINimum argument is specified.
- freq ::= The default (preset) PM modulation rate if the DEFault argument is specified.

[SOURce[1]:]PM:INT:FREQ

See Also

 $[SOURce[1]:]PM:INT:FREQ:STEP\\[SOURce[1]:]PM:DEV$

[SOURce[1]:]PM:INT:FREQ:STEP

$$[SOURce[1]:]PM:INT:FREQ:STEP[:INCRement] \begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:INT:FREQ:STEP" command selects the increment value for the PM internal modulation rate.

The parameters are as follows:

incr Sets the increment value for the PM internal modulation

rate. The allowable range for the parameter is 0.5 Hz to

1 MHz with a resolution of 0.5 Hz.

MAXimum Sets the PM internal modulation increment value to its

maximum allowable value.

MINimum Sets the PM internal modulation increment value to its

minimum allowable value.

DEFault Sets the PM internal modulation increment value to its

default (preset) value of 1 kHz.

If a PM internal modulation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.

[SOURce[1]:]PM:INT:FREQ:STEP

Query Syntax

[SOURce[1]:]PM:INT:FREQ:STEP? | MAXimum | MINimum | DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current PM internal modulation increment value if no argument is specified.
- *incr* ::= The maximum PM internal modulation increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum PM internal modulation increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) PM internal modulation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PM:INT:FREQ

[SOURce[1]:]PM:INT:FUNC

[SOURce[1]:]PM:INT
:FUNC[:SINusoid|:SQUAre|:TRIAngle|:RAMP|:UNIForm|:GAUSSian]

NOTE

This command is only available with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:INT:FUNC" command selects the waveform of the internal phase modulation generator. The default (preset) waveform is SINusoid.

Query Syntax

[SOURce[1]:]PM:INT:FUNC?

Returned format:

waveform < NL >

Where:

- waveform ::= SINUSOID if the currently selected waveform is a sinusoidal waveform.
- waveform ::= SQUARE if the currently selected waveform is a square waveform
- waveform ::= TRIANGLE if the currently selected waveform is a triangle waveform.

[SOURce[1]:]PM:INT:FUNC

- ullet waveform ::= RAMP if the currently selected waveform is a ramp waveform.
- *waveform* ::= UNIFORM if the currently selected waveform is a uniform noise waveform.
- *waveform* ::= GAUSSIAN if the currently selected waveform is a gaussian noise waveform.

See Also

SOURce4:FUNC

[SOURce[1]:]PM:RANGe

NOTE

This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:RANGe" command selects the phase modulation range based on the value of phase deviation. In this version of the synthesizer, only source #4 is available for use during internal phase modulation.

The parameters are as follows:

AUTO Selects phase modulation range automatically.

LOW Sets the phase modulation range from 15 mrads to 4 rads.

HIGH Sets the phase modulation range from .781 rads to 200 rads.

The PM range is coupled to CW frequency, PM rate, and PM deviation. When any one of these parameters is changed, while in PM:RANGe AUTO, the range will automatically change from LOW to HIGH, or HIGH to LOW depending on which range will meet the new set of parameters.

An error message will be generated if the synthesizer cannot meet all three parameters, and either PM rate or PM deviation will be limited. Low range offers better carrier phase noise but lower maximum deviation. High range offers higher maximum phase deviations but lower carrier phase noise.

[SOURce[1]:]PM:RANGe

Query Syntax

[SOURce [1] :] PM:RANGe?

Returned format:

rang < NL >

See Also

PM:[DEViation] [SOURce[1]:]MODulation:OVDR

[SOURce[1]:]PM:SENSitivity

[SOURce[1]:]PM:SENSitivity
$$\begin{cases} sens \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

NOTE

This command is only available on HP 83731B/32B models with Option 800 installed.

PM sensitivity is a ratio of the phase deviation from the carrier per unit change of the modulating signal amplitude. In the synthesizer, sensitivity is displayed as the carrier deviation per volt. Note that there are only two values of PM sensitivity available dependent upon carrier frequency.

The parameters are as follows:

sens	Sets the PM sensitivity. The allowable range for the parameter is shown in Table 2h-4.
MAXimum	Sets the PM sensitivity to the maximum allowable value.
MINimum	Sets the PM sensitivity to the minimum allowable value.

DEFault Sets the internal PM deviation to its default (preset) value.

Entered values will automatically adjust to the closest preset value for the given CW frequency. Refer to Table 2h-4.

[SOURce[1]:]PM:SENSitivity

Table 2h-4. PM Sensitivity to CW Frequency

	=	
Range	High	Low
10 MHz to < 16 MHz	390 mrad/V	7.81 mrad/V
16 MHz to < 64 MHz	781 mrad/V	15.6 mrad/V
64 MHz to < 256 MHz	3.12 rad/V	62.5 mrad/V
256 MHz to < 1 GHz	12.5 rad/V	250 mrad/V
1 GHz to 20 GHz	50 rad/V	1 rad/V

Query Syntax

Returned format:

sens<NL>

- sens ::= The current PM sensitivity if no argument is specified.
- *sens* ::= The maximum PM sensitivity that can be obtained when the MAXimum argument is specified.
- *sens* ::= The minimum PM sensitivity that can be obtained when the MINimum argument is specified.
- sens ::= The preset PM sensitivity when the DEFault argument is specified.

See Also

[SOURce[1]:]PM:STATe

[SOURce[1]:]PM:SOURce

NOTE

This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed. Otherwise the parameter is permanently set to EXTernal.

The "[SOURce[1]:]PM:SOURce" command sets the phase modulation source to either the internal (feed) source or the external source.

The parameters are as follows:

FEED Selects the internal phase modulation source.

INTernal Selects the internal phase modulation source.

EXTernal Selects the external phase modulation source.

When the FEED parameter is sent with this command, the synthesizer will use the internal PM source. When the EXTernal parameter is sent with the command, the external phase modulation source is chosen, allowing phase modulation of the synthesizer with an external signal applied to the front panel FM/ ϕ M IN connector.

When the synthesizer is set to the preset state, the phase modulation source is set to external.

Query Syntax

[SOURce[1]:]PM:SOURce?

Returned format:

source<NL>

Where:

- *source* ::= "FEED" if the phase modulation source is the internal feed source.
- source ::= "EXT" if the phase modulation source is the external source.

See Also

[SOURce[1]:]PM:FEED

[SOURce[1]:]PM:STATe

$$[SOURce[1]:]PM:STATe { ON OFF }$$

NOTE

This command is only available on HP 83731B/32B models with Option 800 installed.

The "[SOURce[1]:]PM:STATe" command turns internal or external phase modulation on or off.

The parameters are as follows:

ON

Turns phase modulation on.

OFF

Turns phase modulation off.

When the synthesizer is set to the preset state, phase modulation is turned off. In the OFF mode, no internal or external phase modulation is allowed, regardless of the SOURce and TYPE setting.

NOTE

PM:STATe and FM:STATe are mutually exclusive. Only one can be on at a time.

Query Syntax

```
[SOURce[1]:]PM:STATe?
```

Returned format:

state<NL>

Where:

state ::= "+1" if PM is currently turned on.
state ::= "+0" if PM is currently turned off.

See Also

Connectors

[SOURce[1]:]PM:COUPling [SOURce[1]:]PM:SENSitivity? [SOURce[1]:PM:SOURce

[SOURce[1]:]PULM:EXTernal:POLarity

[SOURce[1]:]PULM:EXTernal:POLarity { NORMal INVerted }

The "[SOURce[1]:]PULM:EXTernal:POLarity" command selects either inverted or non-inverted polarity for the external pulse input at the PULSE/TRIG IN, GATE IN connector.

The parameters are as follows:

NORMal Selects non-inverted polarity for the external pulse input at

the PULSE/TRIG IN, GATE IN connector.

INVerted Selects inverted polarity for the external pulse input at the

PULSE/TRIG IN, GATE IN connector.

When inverted external pulse modulation is selected, the INVERT EXT annunciator will be lit. If non-inverted external pulse modulation is selected, the EXT annunciator will be lit.

When the synthesizer is set to the preset state, the external pulse input polarity is set to non-inverted (NORM).

NOTE

The polarity of the external pulse input can be set at any time, but the pulse source must be set to external using the "[SOURce[1]:]PULM:SOURce" command and pulse modulation must be turned on using the "[SOURce[1]:]PULM:STATe" command before external pulse mode is used.

Query Syntax

[SOURce[1]:]PULM:EXTernal:POLarity?

Returned format:

polarity < NL >

Where:

- *polarity* ::= "NORM" if the polarity of the external pulse input is currently set to non-inverted.
- *polarity* ::= "INV" if the polarity of the external pulse input is currently set to inverted.

See Also

Connectors

[SOURce[1]:]PULM:SOURce [SOURce[1]:]PULM:STATe

[SOURce[1]:]PULM:SOURce

The "[SOURce[1]:]PULM:SOURce" command sets the pulse modulation source to either internal or external.

The parameters are as follows:

INT

Selects the internal pulse modulation source.

EXT

Selects the external pulse modulation source.

When the synthesizer is set to the preset state, the pulse modulation source is set to external.

The pulse modulation source is set to external for external and inverted external pulse modulation. The pulse modulation source is set to internal for internal, internal triggered, doublet, and gated pulse modulation.

Query Syntax

```
[SOURce[1]:]PULM:SOURce?
```

Returned format:

source<NL>

- *source* ::= "INT" if the pulse modulation source is internal.
- *source* ::= "EXT" if the pulse modulation source is external.

See Also

Connectors

[SOURce[1]:]PULM:STATe [SOURce[1]:]PULM:EXTernal:POLarity TRIGger[:SEQuence[1]|:STARt]:SOURce

[SOURce[1]:]PULM:STATe

$$[\ \, \texttt{SOURCe} \big[\ 1 \, \big] \colon \big] \texttt{PULM:STATe} \ \left\{ \begin{array}{l} \texttt{ON} \\ \texttt{OFF} \end{array} \right\}$$

The "[SOURce[1]:]PULM:STATe" command turns pulse modulation on or off.

The parameters are as follows:

ON

Turns pulse modulation on.

OFF

Turns pulse modulation off.

When the synthesizer is set to the preset state, pulse modulation is turned off.

When pulse modulation is turned off, all pulse modulation modes are off. When pulse modulation is turned on, the pulse modulation mode is determined by the parameters set with the following commands:

- [SOURce[1]:]PULM:SOURce
- [SOURce[1]:]PULM:EXTernal:POLarity
- TRIGger[:SEQuence[1]]:STARt]:SOURce
- TRIGger:SEQuence2|:STOP:SOURce
- [SOURce[1]:]PULSe:DOUBle[:STATe]

Query Syntax

[SOURce[1]:]PULM:STATe?

Returned format:

state<NL>

- *state* ::= "+1" if pulse modulation is currently on.
- *state* ::= "+0" if pulse modulation is currently off.

See Also

 $[SOURce \hbox{\tt [1]:]} PULM: EXTernal: POLarity$

[SOURce[1]:]PULM:SOURce [SOURce[1]:]PULSe:DOUBle[:STATe] TRIGger[:SEQuence[1]]:STARt]:SOURce TRIGger:SEQuence2|:STOP:SOURce

[SOURce[1]:]PULSe:DELay

```
[SOURce[1]:]PULSe:DELay 

| MAXimum | MINimum | UP | DOWN | DEFault |
```

The "[SOURce[1]:]PULSe:DELay" command selects the pulse delay to be used in internal, doublet, or triggered internal pulse modes.

The parameters are as follows:

delay Sets the pulse de	ay. The allowable	range for the parameter
-------------------------	-------------------	-------------------------

is $-419~\mathrm{ms}$ to $+419~\mathrm{ms}$ when using internal pulse mode or $+225~\mathrm{ns}$ to $+419~\mathrm{ms}$ when using internal triggered or

doublet pulse modes.

MAXimum Sets the pulse delay to the maximum allowable value.

MINimum Sets the pulse delay to the minimum allowable value.

UP Increases the pulse delay by the current pulse delay

increment value.

DOWN Decreases the pulse delay by the current pulse delay

increment value.

DEFault Sets the pulse delay to its default (preset) value.

Numeric pulse delay entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse delay entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for pulse delay is $1 \mu s$.

Notes

- 1. In triggered internal pulse mode, the sum of pulse width and pulse delay can not exceed 419 ms.
- 2. The pulse delay can be set at any time, but other parameters must be set before internal, doublet, or triggered internal pulse mode is used.

Query Syntax

Returned format:

delay<NL>

- delay ::= The current pulse delay if no argument is specified.
- *delay* ::= The maximum pulse delay that can be set if the MAXimum argument is specified.
- 'delay ::= The minimum pulse delay that can be set if the MINimum argument is specified.
- *delay* ::= The default (preset) pulse delay if the DEFault argument is specified.

[SOURce[1]:]PULSe:DELay

See Also

[SOURce[1]:]PULSe:DELay:STEP [SOURce[1]:]PULM:SOURce [SOURce[1]:]PULM:STATE [SOURce[1]:]PULSe:WIDTh [SOURce[1]:]TRIGger[:SEQuence[1]|:STARt]:SOURce

[SOURce[1]:]PULSe:DELay:STEP

[SOURce[1]:]PULSe:DELay:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

The "[SOURce[1]:]PULSe:DELay:STEP" command selects the increment value for pulse delay.

The parameters are as follows:

incr Sets the increment value for pulse delay. The allowable

range for the parameter is 25 ns to 838 ms in internal pulse mode or 25 ns to 418.775 ms in internal triggered or doublet

pulse modes.

MAXimum Sets the pulse delay increment value to its maximum

allowable value.

MINimum Sets the pulse delay increment value to its minimum

allowable value.

DEFault Sets the pulse delay increment value to its default (preset)

value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:DELay" command, the pulse delay will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:DELay:STEP" command.

Numeric pulse delay increment value entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse delay increment value entry is made that is not within the allowable parameter range, it will be set to either its maximum or minimum limit. The preset value for the pulse delay increment value is 25 ns.

[SOURce[1]:]PULSe:DELay:STEP

Query Syntax

[SOURce[1]:]PULSe:DELay:STEP[:INCRement]? [MAXimum]
DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current pulse delay increment value if no argument is specified.
- *incr* ::= The maximum pulse delay increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum pulse delay increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) pulse delay increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PULSe:DELay

[SOURce[1]:]PULSe:DOUBLe[:STATe]

[SOURce[1]:]PULSe:DOUBLe[:STATe]
$$\left\{ \begin{array}{l} \mathtt{ON} \\ \mathtt{OFF} \end{array} \right\}$$

The "[SOURce[1]:]PULSe:DOUBLe[:STATe]" command turns the pulse doublet feature on or off.

The parameters are as follows:

ON

Turns pulse doublet on.

OFF

Turns pulse doublet off.

When the synthesizer is set to the preset state, pulse modulation is turned off.

Query Syntax

```
[SOURce[1]:]PULSe:DOUBLe[:STATe]?
```

Returned format:

state<NL>

- state ::= "+1" if pulse doublet is currently on.
- *state* ::= "+0" if pulse doublet is currently off.

[SOURce[1]:]PULSe:DOUBLe[:STATe]

See Also

[SOURce[1]:]PULM:SOURce [SOURce[1]:]PULSe:WIDTh

[SOURce[1]:]PULSe:FREQuency

The "[SOURce[1]:]PULSe:FREQuency" command selects the pulse repetition frequency (PRF). PRF is used during internal pulse modulation or gated pulse modulation.

The parameters are as follows:

ifed Sets the purse repetition frequency (11th). The anoma	freq	Sets the pulse re	petition frequency (PRF). The allowable
--	------	-------------------	-------------------------	------------------

range for the parameter is 2.5 Hz to 3.3 MHz.

MAXimum Sets the pulse repetition frequency to the maximum

allowable value.

MINimum Sets the pulse repetition frequency to the minimum

allowable value.

UP Increases the pulse repetition frequency by the current pulse

repetition frequency increment value.

DOWN Decreases the pulse repetition frequency by the current

pulse repetition frequency increment value.

DEFault Sets the pulse repetition frequency to its default (preset)

value.

If a pulse repetition frequency entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. The preset value for pulse repetition frequency is 10 kHz.

The resolution for the PRF parameter can be found by rounding the reciprocal of PRF (1/PRF or PRI) to the nearest 25 ns and then taking the reciprocal of that value. For example, assume a PRF of 432 kHz is needed. The reciprocal of 432 kHz is 1/432 kHz or 2315 ns. This value rounded to

[SOURce[1]:]PULSe:FREQuency

the nearest 25 ns is 2325 ns. Taking the reciprocal of 2325 ns is 1/2325 ns or 430.107526 kHz. Therefore, if you enter a PRF of 432 kHz, the display will show 432 kHz, but the actual PRF generated by the instrument will be 430.107526 kHz.

Notes

- Changing the PRF parameter automatically causes the PRI parameter set with the "[SOURce[1]:]PULSe:PERiod" command to change since these two parameters are reciprocals of each other.
- The pulse repetition frequency can be set at any time, but other parameters must be set before internal or gated pulse mode is used.

Query Syntax

[SOURce[1]:]PULSe:FREQuency? MINimum
DEFault

Returned format:

freq<NL>

- freq ::= The current pulse repetition frequency if no argument is specified.
- *freq* ::= The maximum pulse repetition frequency that can be set if the MAXimum argument is specified.
- *freq* ::= The minimum pulse repetition frequency that can be set if the MINimum argument is specified.

ullet freq ::= The default pulse repetition frequency if the DEFault argument is specified.

See Also

[SOURce[1]:]PULM:SOURce

[SOURce[1]:]PULM:STATe [SOURce[1]:]PULSe:FREQuency:STEP

[SOURce[1]:]PULSe:PERiod

[SOURce[1]:]PULSe:FREQuency:STEP

[SOURce[1]:]PULSe:FREQuency:STEP[:INCRement] $\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$

The "[SOURce[1]:]PULSe:FREQuency:STEP" command selects the increment value for pulse repetition frequency.

The parameters are as follows:

incr Sets the increment value for pulse repetition frequency

(PRF). The allowable range for the parameter is

0.001 Hz to 3.2999975 MHz.

MAXimum Sets the pulse repetition frequency increment value to its

maximum allowable value.

MINimum Sets the pulse repetition frequency increment value to its

minimum allowable value.

DEFault Sets the pulse repetition frequency increment value to its

default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:FREQuency" command, the pulse repetition frequency will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:FREQuency:STEP" command.

If a pulse repetition frequency increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the pulse repetition frequency increment value is 100 Hz.

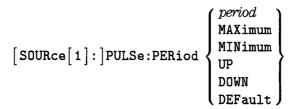
The resolution for the PRF increment value is 1 mHz (millihertz); entries with a resolution finer than 1 mHz will be rounded to the nearest 1 mHz.

Query Syntax

[SOURce[1]:]PULSe:FREQuency:STEP[:INCRement]? MAXimum
DEFault

Returned format:

incr<NL>


Where:

- *incr* ::= The current pulse repetition frequency increment value if no argument is specified.
- *incr* ::= The maximum pulse repetition frequency increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum pulse repetition frequency increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) pulse repetition frequency increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PULSe:FREQuency

[SOURce[1]:]PULSe:PERiod

The "[SOURce[1]:]PULSe:PERiod" command selects the pulse repetition interval (PRI). PRI is used during internal pulse modulation or gated pulse modulation.

The parameters are as follows:

period	Sets the pulse	repetition	interval (PR	RD. The :	allowable range
por row	oces are puice	1 CPC0101011	TITLE VOLUME (III	uj. III.	and water range

for the parameter is 300 ns to 419 ms.

MAXimum Sets the pulse repetition interval to the maximum allowable

value.

MINimum Sets the pulse repetition interval to the minimum allowable

value.

UP Increases the pulse repetition interval by the current pulse

repetition interval increment value.

DOWN Decreases the pulse repetition interval by the current pulse

repetition interval increment value.

DEFault Sets the pulse repetition interval to its default (preset) value.

If a pulse repetition interval entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. The preset value for pulse repetition interval is $100~\mu s$.

The resolution for PRI parameter entries is 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns.

Notes

- Changing the PRI parameter automatically causes the PRF parameter set with the "[SOURce[1]:]PULSe:FREQuency" command to change since these two parameters are reciprocals of each other.
- 2. The pulse repetition interval can be set at any time, but other parameters must be set before internal or gated pulse mode is used.

Query Syntax

[SOURce[1]:]PULSe:PERiod? MINimum DEFault

Returned format:

period<NL>

- period ::= The current pulse repetition interval if no argument is specified.
- *period* ::= The maximum pulse repetition interval that can be set if the MAXimum argument is specified.
- *period* ::= The minimum pulse repetition interval that can be set if the MINimum argument is specified.
- *period* ::= The default (preset) pulse repetition interval if the DEFault argument is specified.

[SOURce[1]:]PULSe:PERiod

See Also

[SOURce[1]:]PULM:SOURce [SOURce[1]:]PULM:STATe [SOURce[1]:]PULSe:FREQuency [SOURce[1]:]PULSe:PERiod:STEP

[SOURce[1]:]PULSe:PERiod:STEP

[SOURce[1]:]PULSe:PERiod:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

The "[SOURce[1]:]PULSe:PERiod:STEP" command selects the increment value for pulse repetition interval.

The parameters are as follows:

incr Sets the increment value for pulse repetition interval (PRI).

The allowable range for the parameter is 25 ns to 418.9997.

MAXimum Sets the pulse repetition interval increment value to its

maximum allowable value.

MINimum Sets the pulse repetition interval increment value to its

minimum allowable value.

DEFault Sets the pulse repetition interval increment value to its

default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:PERiod" command, the pulse repetition interval will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:PERiod:STEP" command.

If a pulse repetition interval increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the pulse repetition interval increment value is $1~\mu s$.

The resolution for PRI increment value entries is 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns.

[SOURce[1]:]PULSe:PERiod:STEP

Query Syntax

[SOURce[1]:]PULSe:PERiod:STEP[:INCRement]? | MAXimum | MINimum | DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current pulse repetition interval increment value if no argument is specified.
- *incr* ::= The maximum pulse repetition interval increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum pulse repetition interval increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) pulse repetition interval increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PULSe:PERiod

[SOURce[1]:]PULSe:TRANsition[:LEADing]

The "[SOURce[1]:]PULSe:TRANsition[:LEADing]" command allows you to manually select either a slow (300 ns), medium (30 ns), or fast (10 ns) pulse rise time.

NOTE

Manual pulse rise time selection must be turned on using the "[SOURce[1]:]PULSe:TRANsition:STATe" command for the chosen pulse rise time to be used by the synthesizer.

The parameters are as follows:

SLOW Selects a 300 ns manual pulse rise time.

MEDium Selects a 30 ns manual pulse rise time.

FAST Selects a 10 ns manual pulse rise time.

NOTE

Manual pulse rise time is selectable only in the HP 83732A/32B below 1 GHz.

NOTE

When you set the rise time using the "[SOURce[1]:]PULSe:TRANsition[:LEADing]" command, the fall time set with the "[SOURce[1]:]PULSe:TRANsition:TRAiling" command will be automatically set to the same value. There is no method of changing the fall time independently of the rise time.

When the synthesizer is set to the preset state, manual pulse rise time is set to FAST.

Application for Manual Pulse Rise Time and Fall Time Selection

A series of low-pass filters are used to reduce output harmonics when the synthesizer output frequency is less than 1 GHz. The filter pass bands can be narrow enough to induce pulse ringing if the pulse rise time is too fast.

The synthesizer automatically selects a slower pulse rise time (when "[SOURce[1]:]PULSe:TRANsition:STATe" is set to OFF) as the carrier frequency is decreased to minimize ringing and video feed-through caused by the low-pass filtering. The appropriate pulse rise time is automatically selected as follows:

Output Frequency	Pulse Rise Time
10 MHz to 64 MHz	300 ns
64 MHz to 500 MHz	30 ns
Greater than 500 MHz	10 ns

In applications where a faster pulse rise time than that shown in the table is needed at a particular output frequency, you can manually choose a pulse rise time. The disadvantage of choosing a faster pulse rise time is degraded pulse performance.

Query Syntax

[SOURce[1]: PULSe: TRANsition[:LEADing]?

Returned format:

time < NL >

Where:

- *time* ::= "SLOW" if the manually selected pulse rise time (and fall time) is currently set to slow (300 ns).
- time ::= "MED" if the manually selected pulse rise time (and fall time) is currently set to medium (30 ns).
- *time* ::= "FAST" if the manually selected pulse rise time (and fall time) is currently set to fast (10 ns).

See Also

[SOURce[1]:]PULSe:TRANsition:STATe [SOURce[1]:]PULSe:TRANsition:TRAiling

[SOURce[1]:]PULSe:TRANsition:STATe

 $[SOURce[1]:]PULSe:TRANsition:STATe { ON OFF }$

The "[SOURce[1]:]PULSe:TRANsition:STATe" command turns manual pulse rise time selection on or off.

The parameters are as follows:

ON Turns manual pulse rise time selection on (you

can select one of three pulse rise times using the

"[SOURce[1]:]PULSe:TRANsition[:LEADing]" command).

OFF Turns manual pulse rise time selection off (the instrument

automatically selects optimum pulse rise time for the

selected carrier frequency range).

NOTE

Manual pulse rise time is selectable only in the HP 83732A/32B.

Once manual pulse rise time selection has been turned on using the "[SOURce[1]:]PULSe:TRANsition:STATe" command, one of three pulse rise times can be selected using the "[SOURce[1]:]PULSe:TRANsition[:LEADing]" command.

When the synthesizer is set to the preset state, pulse rise time selection is turned off.

Application for Manual Pulse Rise Time Selection

A series of low-pass filters are used to reduce output harmonics when the synthesizer output frequency is less than 1 GHz. The filter pass bands can be narrow enough to induce pulse ringing if the pulse rise time is too fast.

The synthesizer automatically selects a slower pulse rise time as the carrier frequency is decreased to minimize ringing and video feed-through caused by the low-pass filtering. The appropriate pulse rise time is automatically selected as follows:

Output Frequency	Pulse Rise Time	
10 MHz to 64 MHz	300 ns	
64 MHz to 500 MHz	30 ns	
Greater than 500 MHz	10 ns	

In applications where a faster pulse rise time than that shown in the table is needed at a particular output frequency, you can manually choose a pulse rise time. The disadvantage of choosing a faster pulse rise time is degraded pulse performance.

Query Syntax

[SOURce[1]:]PULSe:TRANsition:STATe?

Returned format:

state<NL>

- state ::= "+1" if manual pulse rise time selection is currently on.
- state := "+0" if manual pulse rise time selection is currently off.

[SOURce[1]:]PULSe:TRANsition:STATe

See Also

[SOURce[1]:]PULSe:TRANsition[:LEADing] [SOURce[1]:]PULSe:TRANsition:TRAiling

[SOURce[1]:]PULSe:TRANsition:TRAiling

[SOURce[1]:]PULSe:TRANsition:TRAiling { SLOW MEDium FAST }

The "[SOURce[1]:]PULSe:TRANsition:TRAiling" command allows you to manually select either a slow (300 ns), medium (30 ns), or fast (10 ns) pulse fall time.

NOTE

Manual pulse fall time selection must be turned on using the "[SOURce[1]:]PULSe:TRANsition:STATe" command for the chosen pulse fall time to be used by the synthesizer.

The parameters are as follows:

SLOW Selects a 300 ns manual pulse fall time.

MEDium Selects a 30 ns manual pulse fall time.

FAST Selects a 10 ns manual pulse fall time.

NOTE

Manual pulse fall time is selectable only in the HP 83732A/32B below 1 GHz.

NOTE

When you set the fall time using the "[SOURce[1]:]PULSe:TRANsition:TRAiling" command, the rise time set with the "[SOURce[1]:]PULSe:TRANsition[:LEADing]" command will be automatically set to the same value. There is no method of changing the rise time independently of the fall time.

When the synthesizer is set to the preset state, manual pulse fall time is set to FAST.

Application for Manual Pulse Rise Time and Fall Time Selection

A series of low-pass filters are used to reduce output harmonics when the synthesizer output frequency is less than 1 GHz. The filter pass bands can be narrow enough to induce pulse ringing if the pulse rise time is too fast.

The synthesizer automatically selects a slower pulse rise time (when "[SOURce[1]:]PULSe:TRANsition:STATe" is set to OFF) as the carrier frequency is decreased to minimize ringing and video feed-through caused by the low-pass filtering. The appropriate pulse rise time is automatically selected as follows:

Output Frequency	Pulse Rise Time
10 MHz to 64 MHz	300 ns
64 MHz to 500 MHz	30 ns
Greater than 500 MHz	10 ns

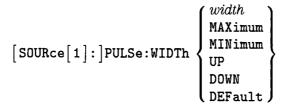
In applications where a faster pulse rise time than that shown in the table is needed at a particular output frequency, you can manually choose a pulse rise time. The disadvantage of choosing a faster pulse rise time is degraded pulse performance.

Query Syntax

[SOURce[1]:]PULSe:TRANsition:TRAiling?

Returned format:

time < NL >


Where:

- *time* ::= "SLOW" if the manually selected pulse fall time (and rise time) is currently set to slow (300 ns).
- *time* ::= "MED" if the manually selected pulse fall time (and rise time) is currently set to medium (30 ns).
- *time* ::= "FAST" if the manually selected pulse fall time (and rise time) is currently set to fast (10 ns).

See Also

[SOURce[1]:]PULSe:TRANsition[:LEADing] [SOURce[1]:]PULSe:TRANsition:STATe

[SOURce[1]:]PULSe:WIDTh

The "[SOURce[1]:]PULSe:WIDTh" command selects the pulse width to be used in internal, triggered internal, doublet, and gated pulse modes.

The parameters are as follows:

width Sets the pulse width. The allowable range for the parameter

is 0 ns to 419 ms.

MAXimum Sets the pulse width to the maximum allowable value.

MINimum Sets the pulse width to the minimum allowable value.

UP Increases the pulse width by the current pulse width

increment value.

DOWN Decreases the pulse width by the current pulse width

increment value.

DEFault Sets the pulse width to its default (preset) value.

Numeric pulse width entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse width entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for pulse width is $10~\mu s$.

Notes

- 1. In triggered internal pulse mode, the sum of pulse width and pulse delay can not exceed 419 ms.
- 2. The pulse width can be set at any time, but other parameters must be set before internal, triggered internal, doublet, or gated pulse mode is used.

Query Syntax

Returned format:

width < NL >

Where:

- width ::= The current pulse width if no argument is specified.
- width ::= The maximum pulse width that can be set if the MAXimum argument is specified.
- width ::= The minimum pulse width that can be set if the MINimum argument is specified.
- width ::= The default (preset) pulse width if the DEFault argument is specified.

See Also

[SOURce[1]:]PULM:SOURce [SOURce[1]:]PULM:STATE [SOURce[1]:]PULSe:DELay [SOURce[1]:]PULSe:WIDTh:STEP TRIGger[:SEQuence[1]]:STARt]:SOURce

[SOURce[1]:]PULSe:WIDTh:STEP

[SOURce[1]:]PULSe:WIDTh:STEP[:INCRement]
$$\begin{cases} incr \\ MAXimum \\ MINimum \\ DEFault \end{cases}$$

The "[SOURce[1]:]PULSe:WIDTh:STEP" command selects the increment value for pulse width.

The parameters are as follows:

incr Sets the increment value for pulse width. The allowable

range for the parameter is 25 ns to 419 ms.

MAXimum Sets the pulse width increment value to its maximum

allowable value.

MINimum Sets the pulse width increment value to its minimum

allowable value.

DEFault Sets the pulse width increment value to its default (preset)

value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:WIDTh" command, the pulse width will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:WIDTh:STEP" command.

Numeric pulse width increment value entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse width increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the pulse width increment value is 100 ns.

[SOURce[1]:]PULSe:WIDTh:STEP

Query Syntax

[SOURce[1]:]PULSe:WIDTh:STEP[:INCRement]? MAXimum DEFault

Returned format:

incr<NL>

Where:

- *incr* ::= The current pulse width increment value if no argument is specified.
- *incr* ::= The maximum pulse width increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum pulse width increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) pulse width increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PULSe:WIDTh

TRIGger[:SEQuence[1]|:STARt]:SOURce

TRIGger[:SEQuence[1]|:STARt]:SOURce { IMMediate EXTernal }

The "TRIGger[:SEQuence[1]|:STARt]:SOURce" command sets the pulse trigger source.

The parameters are as follows:

IMMediate Selects immediate pulse triggering (no external trigger).

EXTernal Selects external pulse triggering.

When the pulse trigger source has been set to EXTernal, an RF pulse will occur at the RF OUTPUT connector whenever a valid trigger signal occurs at the PULSE/TRIG IN, GATE IN connector. An external pulse trigger source is only valid when the pulse source set with the "[SOURce[1]:]PULM:SOURce" command is internal.

The preset value for pulse trigger source is immediate (no external pulse trigger).

Query Syntax

TRIGger[:SEQuence[1]:STARt]:SOURce?

Returned format:

source<NL>

Where:

- *source* ::= "IMM" if the pulse trigger source is currently set to immediate (no external pulse trigger).
- *source* ::= "EXT" if the pulse trigger source is currently set to external.

TRIGger[:SEQuence[1]|:STARt]:SOURce

See Also

Connectors
[SOURce[1]:]PULM:SOURce
[SOURce[1]:]PULM:STATe
TRIGger:SEQuence2:STOP:SOURce

TRIGger: SEQuence 2: SLOPe

 ${\tt TRIGger:SEQuence2:SLOPe}~\big\{~{\tt NEGative}~\big\}$

The "TRIGger:SEQuence2:SLOPe" command is for SCPI compatibility only. This command is always set to NEGative.

See Also

TRIGger[:SEQuence[2]]:STARt]:SOURce

TRIGger:SEQuence2:STOP:SOURce

TRIGger:SEQuence2:STOP:SOURce { IMMediate } EXTernal }

The "TRIGger:SEQuence2:STOP:SOURce" command sets the pulse trigger stop source.

The parameters are as follows:

IMMediate

Sets the trigger stop source to immediate (no external

trigger).

EXTernal

Sets the trigger stop source to external.

This command is used when setting the synthesizer to gated pulse mode. When the trigger stop source is set to external and the trigger source is also set to external using the "TRIGger[:SEQuence[1]|:STARt]:SOURce" command, Gated pulse mode is chosen.

The preset value for pulse trigger stop source is immediate (no external pulse trigger).

Query Syntax

TRIGger:SEQuence2:STOP:SOURce?

Returned format:

source<NL>

Where:

- *source* ::= "IMM" if the pulse trigger stop source is currently set to immediate (no external pulse trigger).
- *source* ::= "EXT" if the pulse trigger stop source is currently set to external.

See Also

Connectors
[SOURce[1]:]PULM:SOURce
[SOURce[1]:]PULM:STATe
TRIGger[:SEQuence[1]:STARt]:SOURce

Modulation Commands

2i

Power Level Commands

Power Level Commands

This sub-chapter contains detailed information on all programming commands pertaining to power level control.

[SOURce[1]:]POWer[:LEVel]

The "[SOURce[1]:]POWer[:LEVel]" command sets the output power level of the synthesizer.

The parameters are as follows:

ampl	Sets the synthesizer ou	tput power level.	The allowable

range for the parameter is $-120~\mathrm{dBm}$ ($-100~\mathrm{dBm}$ on HP 83731A/32A) to $+30~\mathrm{dBm}$ if Option 1E1 is installed and

-15 dBm to +30 dBm if Option 1E1 is not installed.

MAXimum Sets the synthesizer output power level to the maximum

allowable value.

MINimum Sets the synthesizer output power level to the minimum

allowable value.

UP Increases the synthesizer output power level by the current

power level increment value.

DOWN Decreases the synthesizer output power level by the current

power level increment value.

DEFault Sets the synthesizer output power level to its default (preset)

value.

The allowable range for the ampl parameter is -120 dBm (-100 dBm on HP 83731A/32A) to +30 dBm if Option 1E1 is installed and -15 dBm to +30 dBm if Option 1E1 is not installed.

[SOURce[1]:]POWer[:LEVel]

NOTE

The actual maximum internally leveled output power for your instrument at a given frequency can be found by increasing the synthesizer output power until the UNLVL annunciator lights.

If a power level entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. Power level resolution is $0.01 \, \mathrm{dB}$. The preset value is $-110 \, \mathrm{dBm}$ ($-90 \, \mathrm{dBm}$ on HP 83731A/32A) if Option 1E1 is installed and $0 \, \mathrm{dBm}$ if Option 1E1 is not installed.

When the power level is modified, the synthesizer circuitry will ensure that transitions from one power level to another will not allow the level to exceed the maximum of the two levels if the instrument is in CW mode (not modulated). If the RF output is being amplitude modulated or pulse modulated, the synthesizer circuitry will ensure that transitions from one power level to another will not exceed the maximum of the two power levels by more than 0.5 dB typically.

NOTE

Changing frequency or power level while pulse modulating the output triggers an internal power level calibration. This calibration includes a CW calibration for approximately 10 ms for HP 83731B/32B; 30 ms for HP 83731A/32A. Refer to the "[SOURce[1]:]POWer:PROTection" command for information on how to protect devices sensitive to CW power.

Four options are available for leveling of the output power. These are internal leveling, external diode leveling, external power meter leveling, and the level correct routine. Refer to the "[SOURce[1]:]POWer:ALC" command and level correct-related commands for information on the different leveling options.

Query Syntax

```
[SOURce[1]:]POWer[:LEVel][:IMMediate][:AMPLitude]?

[MAXimum]

MINimum

DEFault
```

Returned format:

ampl < NL >

Where:

- *ampl* ::= The current output power level if no argument is specified.
- *ampl* ::= The maximum output power level that can be set if the MAXimum argument is specified.
- ampl ::= The minimum output power level that can be set if the MINimum argument is specified.
- *ampl* ::= The default (preset) output power level if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer:ALC:SOURce [SOURce[1]:]POWer:PROTection:STATe [SOURce[1]:]POWer[:LEVel]:STEP UNIT:POWer|:VOLTage

[SOURce[1]:]POWer[:LEVel]:STEP

The "[SOURce[1]:]POWer[:LEVel]:STEP" command selects the increment value for the synthesizer output power level.

The parameters are as follows:

incr Sets the increment value for output power level. The

allowable range for the parameter is 0.01~dB to 150~dB if Option 1E1 is installed and 0.01~dB to 45~dB if Option 1E1 is

not installed.

MAXimum Sets the power level increment value to its maximum

allowable value.

MINimum Sets the power level increment value to its minimum

allowable value.

DEFault Sets the power level increment value to its default (preset)

value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]POWer[:LEVel]" command, the output power level will be increased or decreased by a step size set with the "[SOURce[1]:]POWer[:LEVel]:STEP" command.

Numeric power level increment value entries have a resolution 0.01 dB.

If a power level increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the power level increment value is 1 dB.

Query Syntax

Returned format:

incr<NL>

Where:

- *incr* ::= The current power level increment value if no argument is specified.
- *incr* ::= The maximum power level increment value that can be set if the MAXimum argument is specified.
- *incr* ::= The minimum power level increment value that can be set if the MINimum argument is specified.
- *incr* ::= The default (preset) power level increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer[:LEVel] UNIT:POWer|:VOLTage **Power Level Commands**

 Programmable Interface Commands 2**j**

Programmable Interface Commands

Programmable Interface Commands

This sub-chapter contains detailed information on all programming commands pertaining to the programmable interface.

*OPC (Operation Complete)

*OPC

The "*OPC" command sets bit 0 in the Standard Event Status register to one (1) when the synthesizer has completed execution of all programming commands preceding it.

The "*OPC" command or the "*OPC?" query should appear as the last command in a command line.

The "*OPC?" query does not affect the Operation Complete bit in the Standard Event Status register.

Query Syntax

*OPC?

Returned format:

number<NL>

Where:

• *number* ::= "+1" when bit 0 in the Standard Event Status register has been set to one.

*OPC (Operation Complete)

See Also

- *ESE
- *ESR?
- *SRE
- *STB?

SYSTem:COMMunicate:GPIB:ADDRess

SYSTem: COMMunicate: GPIB: ADDRess { MAXimum }

The "SYSTem: COMMunicate: GPIB: ADDRess" command allows you to change the synthesizer HP-IB address.

The parameters are as follows:

The HP-IB address of the synthesizer. The valid address address

range is 00 to 30 (decimal).

Sets the synthesizer HP-IB address to its maximum allowable **MAXimum**

Sets the synthesizer HP-IB address to its minimum allowable **MINimum**

value.

The HP-IB address set at the factory is 19. Pressing the PRESET key or sending the *RST or SYSTem: PRESet commands will not change the HP-IB address. When the HP-IB address is changed, the new address takes affect immediately.

Query Syntax

SYSTem:COMMunicate:GPIB:ADDRess? MAXimum MINimum

Returned format:

address<NL>

SYSTem:COMMunicate:GPIB:ADDRess

Where:

- *address* ::= The current HP-IB address of the synthesizer when no optional argument is specified.
- *address* ::= The maximum allowable synthesizer HP-IB address when the MAXimum argument is specified.
- *address* ::= The minimum allowable synthesizer HP-IB address when the MINimum argument is specified.

See Also

SYSTem:COMMunicate:GPIB:ADDRess:STEP

SYSTem:LANGuage

The "SYSTem:LANGuage" command sets the programming language that is accepted by the synthesizer.

The parameters are as follows:

"SCPI" Sets the pro

Sets the programming language to "SCPI" (Standard Commands for Programmable Instruments). This is the current industry standard and is the language documented

in this manual.

"COMP=8673" Sets the programming language to 8673 emulation. See 8673

Compatibility Guide section of this manual.

The programming language set at the factory is SCPI. Pressing the PRESET key or sending the *RST or SYSTem: PRESet commands will not change the programming language.

NOTE

Double quotation marks are required as part of the argument.

Query Syntax

SYSTem: LANGuage?

Returned format:

lang < NL >

Where:

• lang ::= "SCPI" if SCPI programming language is currently chosen.

NOTE

This command may not operate if the language is chosen other than SCPI because command "syst:lang" is an SCPI command and probably does not exist in another language. However, for this instrument, the 8673 emulation mode is equipped with the SAid language query command.

UNIT:FREQuency

UNIT:FREQuency { freq suffix }

The "UNIT:FREQuency" command determines the default suffix that will be assumed for the numeric argument of all frequency-related programming commands if no suffix is used. It also determines the units for the data that frequency-related queries return.

The parameter is as follows:

freq suffix

The default suffix to be assumed by all frequency-related programming commands when no suffix is used.

This command determines the default suffix that will be assumed for the numeric argument of all frequency-related programming commands when no suffix is used. The preset default suffix is hertz (HZ). For example, if you wanted to set the synthesizer output frequency to 2.5 GHz with the default suffix being hertz (the preset value), you could send the following command:

OUTPUT 719; "FREQ 250000000"

If you were to change the default suffix to gigahertz by sending the command "UNIT:FREQ GHZ", the following command could be sent to set the synthesizer output frequency to 2.5 GHz:

OUTPUT 719; "FREQ 2.5"

The available default suffixes appear in the following table.

UNIT:FREQuency

Table 2j-1. Available Default Suffixes

Default Suffix	Multiplication Factor
EXHZ	1×10 ¹⁸
PEHZ	1×10 ¹⁵
THZ	1×10 ¹²
GHZ	1×10 ⁹
MHZ	1×10 ⁶
KHZ	1×10 ³
HZ	1×10 ⁰
UHZ	1×10 ⁻⁶
NHZ	1×10 ⁻⁹
PHZ	1×10 ⁻¹²
FHZ	1×10 ⁻¹⁵
AHZ	1×10 ⁻¹⁸

NOTE

There is no suffix for "1 $\times\,10^{-3}$ " when working with the HZ suffix.

Query Syntax

UNIT: FREQuency?

Returned format:

freq suffix<NL>

Where:

• *freq suffix* ::= The current default suffix for frequency-related programming commands and queries.

UNIT:POWer|:VOLTage

UNIT:POWer|:VOLTage { level suffix }

The "UNIT:POWer|:VOLTage" command determines the default suffix that will be assumed for the numeric argument of all power level-related programming commands if no suffix is used. It also determines the units for the data that power level-related queries return.

The parameter is as follows:

level suffix

The default suffix to be assumed by all power level-related programming commands when no suffix is used.

This command determines the default suffix that will be assumed for the numeric argument of all power level-related programming commands when no suffix is used. The preset default suffix is dBm (DBM). For example, if you wanted to set the synthesizer output power level to 13 dBm with the default suffix being dBm (the preset value), you could send the following command:

OUTPUT 719; "POW 13"

If you were to change the default suffix to milliwatts by sending the command "UNIT:POW MW", the following command could be sent to set the synthesizer output power level to $13~\mathrm{dBm}$.

OUTPUT 719; "POW 20" 20 mw is equal to 13 dBm.

There are several suffixes related to power level that can be used. These suffixes appear in the following table ("mult" can be left blank or replaced by the desired suffix multiplier, which is explained after the following table):

Table 2j-2. Power Level-Related Suffixes

Suffix	Description
"mult"V	Volts
"mult"W	Watts
DB"mult"V	Decibel Volts
DB"mult"W	Decibel Watts

The suffixes in the above table can include an optional suffix multiplier in place of "mult". For example, the volts suffix "V" can be preceded by the suffix multiplier "M" to yield MV (millivolts) or 1×10^{-3} volts.

The available suffix multipliers appear in the following table.

Table 2j-3. Available Suffix Multipliers

Suffix Multiplier	Multiplication Factor
EX	1×10 ¹⁸
PE	1×10 ¹⁵
T	1×10 ¹²
G	1×10 ⁹
MA	1×10 ⁶
K	1×10 ³
M^1	1×10 ⁻³
U	1×10 ⁻⁶
N	1×10 ⁻⁹
Р	1×10 ⁻¹²
F	1×10 ⁻¹⁵
Α	1×10 ⁻¹⁸

¹ The suffix "DBM" is equivalent to the suffix "DBMW."

Query Syntax

UNIT:POWer |: VOLTage?

Returned format:

level suffix<NL>

Where:

• *level suffix* ::= The current default suffix (including the suffix multiplier) for power level-related programming commands and queries.

UNIT:TIME

UNIT:TIME { time suffix }

The "UNIT:TIME" command determines the default suffix that will be assumed for the numeric argument of all time-related programming commands if no suffix is used. It also determines the units for the data that time-related queries return.

The parameter is as follows:

time suffix

The default suffix to be assumed by all time-related programming commands when no suffix is used.

This command determines the default suffix that will be assumed for the numeric argument of all time-related programming commands when no suffix is used. The preset default suffix is seconds (S). For example, if you wanted to set pulse delay to $18~\mu s$ with the default suffix being seconds (the preset value), you could send the following command:

OUTPUT 719; "PULS:DEL .000018"

If you were to change the default suffix to microseconds by sending the command "UNIT:TIME US", the following command could be sent to set pulse delay to 18μ s.

OUTPUT 719; "PULS:DEL 18"

The available default suffixes appear in the following table.

Table 2j-4. Available Default Suffixes

Default Suffix	Multiplication Factor
EXS	1×10 ¹⁸
PES	1×10 ¹⁵
TS	1×10 ¹²
GS	1×10 ⁹
MAS	1×10 ⁶
KS	1×10 ³
S	1×10 ⁰
MS	1×10 ⁻³
US	1×10 ⁻⁶
NS	1×10 ⁻⁹
PS_	1×10 ⁻¹²
FS	1×10 ⁻¹⁵
AS	1×10 ⁻¹⁸

Query Syntax

UNIT:TIME?

Returned format:

time suffix<NL>

Where:

• *time suffix* ::= The current default suffix for time-related programming commands and queries.

*WAI (Wait-to-Continue Command)

*WAI

The "*WAI" command makes the synthesizer wait until pending operations have taken place, then continues executing commands that follow the "*WAI" command.

The "*WAI" command is useful when placed after those commands that are not necessarily finished executing before the next HP-IB command is executed when it is critical that they be finished executing. In general, SCPI commands execute sequentially but the "*WAI" command can be used to allow the hardware to settle after a command is executed.

See Also

*OPC

2k

RF Output Control Commands

RF Output Control Commands

This sub-chapter contains detailed information on all programming commands pertaining to RF output control.

OUTPut:PROTection[:STATe]

$$\texttt{OUTPut:PROTection}[:STATe] \left\{ \begin{array}{c} \texttt{ON} \\ \texttt{OFF} \end{array} \right\}$$

The "OUTPut:PROTection[:STATe]" command turns RF protection during frequency switching on or off. This function is useful when measuring the synthesizer frequency switching time.

The parameters are as follows:

ON

Turns RF protection on during frequency switching.

OFF

Turns RF protection off during frequency switching.

The synthesizer contains an RF protection circuit that momentarily attenuates output power and then brings the output power back up to the required level (in 20 ms nominal) when the synthesizer output frequency is changed. This circuit assures that the output power does not overshoot the power level set via the front panel or HP-IB during frequency switching.

When the synthesizer is set to the preset state, RF protection is turned on.

Notes

- RF protection during frequency switching can not be turned off when AM, FM, or pulse modulation is being used. It can only be turned off when the synthesizer is in CW mode.
- Even when the synthesizer is in CW mode, and the RF protection during frequency switching function is turned off, the RF protection circuit will switch in when the synthesizer divider circuits switch or whenever frequency switches greater than 260 MHz occur.

OUTPut:PROTection[:STATe]

Query Syntax

OUTPut:PROTection[:STATe]?

Returned format:

state<NL>

Where:

- state ::= "+1" if RF protection during frequency switching is currently turned on
- *state* ::= "+0" if RF protection during frequency switching is currently turned off.

See Also

[SOURce[1]:]FREQuency[:CW|:FIXed]

OUTPut[:STATe]

$$\mathtt{OUTPut}\big[:\mathtt{STATe}\,\big]\left\{\begin{smallmatrix}\mathtt{ON}\\\mathtt{OFF}\end{smallmatrix}\right\}$$

The "OUTPut[:STATe]" command turns the signal at the RF OUTPUT connector on and off.

The parameters are as follows:

ON

Turns the signal at the RF OUTPUT connector on.

OFF

Turns the signal at the RF OUTPUT connector off.

When the "OUTP:STAT OFF" command is sent to the synthesizer, the internal oscillators are turned off, and the internal RF power shutdown circuit is turned on. The preset state for the signal at the RF OUTPUT connector is on.

Query Syntax

Returned format:

state<NL>

Where:

- *state* ::= "+1" if the signal at the RF OUTPUT connector is currently turned on.
- *state* ::= "+0" if the signal at the RF OUTPUT connector is currently turned off.

See Also

Connectors

[SOURce[1]:]POWer:ATTenuation:AUTO

[SOURce[1]:]POWer:ATTenuation:AUTO
$$\left\{ \begin{array}{l} \text{ON} \\ \text{OFF} \\ \text{ONCE} \end{array} \right\}$$

The "[SOURce[1]:]POWer:ATTenuation:AUTO" command turns the attenuator hold function on or off.

The parameters are as follows:

ON Turns the attenuator hold function off.

OFF Turns the attenuator hold function on.

ONCE Turns the attenuator hold function off and then on.

The attenuator hold function can be used to extend the vernier range to prevent the step attenuator from switching between two levels. Locking the step attenuator keeps the attenuator from switching between the two levels as leveled power is varied above and below the threshold level, thus saving wear on the attenuator.

When the "ONCE" parameter is used, the attenuator hold function is temporarily turned off so that the synthesizer can automatically update the attenuator setting, then it is turned on to lock the attenuator at that setting.

Advantages

Locking the step attenuator prevents switching between two levels when the leveled output power is set near an attenuator switching threshold. This is useful when using external leveling.

Disadvantages

When the step attenuator is locked, the output power dynamic range is limited to the vernier range at the current output frequency. The vernier range extends from a lower limit that is typically 5 dB lower than the specified value for that range to an upper limit that is frequency dependent on the synthesizer output frequency.

NOTE

In external diode detector leveling or external power meter leveling mode, the attenuator is always locked in the current range and can not be unlocked using this function.

Query Syntax

[SOURce[1]:]POWer:ATTenuation:AUTO?

Returned format:

state<NL>

Where:

• *state* ::= "+1" if the attenuator hold function is currently off or "+0" if the attenuator hold function is currently on or set to "once."

See Also

[SOURce[1]:]POWer[:LEVel]

 $[SOURce[1]:]POWer:PROTection:STATe <math> \{ \begin{array}{c} ON \\ OFF \end{array} \}$

The "[SOURce[1]:]POWer:PROTection:STATe" command turns the average power inhibit function on or off.

NOTE

This function is not available if Option 1E1 (step attenuator) is not installed.

The parameters are as follows:

ON Turns the average power inhibit function on.

OFF Turns the average power inhibit function off.

When the synthesizer is set to the preset state, the average power inhibit function is turned off.

The average power inhibit function can be used during pulse modulation to protect devices sensitive to high average power. When the output power level or frequency of the synthesizer is changed during pulse modulation, the internal leveling algorithm causes the RF output to be momentarily switched to CW to enable the synthesizer circuitry to sample the signal level and make a correction. If the output of the synthesizer is connected to circuitry that is average power-sensitive, damage to the circuitry could result during this CW calibration. When in internal leveling mode, the CW calibration is approximately 30 ms.

When the average power inhibit function is off (the preset condition), the CW calibration will accompany output power level and frequency changes. The CW calibration will also be present the first time pulse or logarithmic amplitude modulation is enabled. When average power inhibit is on, the

internal step attenuator will switch in 110 dB (90 dB on HP 83731A/32A) of attenuation during the CW calibration. This will protect power-sensitive circuitry connected to the RF OUTPUT connector, but will cause extra wear on the step attenuator . Turning the function on will also cause a momentary drop in signal power (approximately 200 ms) and will lengthen frequency and power level switching times by 70 ms.

Pulsed Power Pre-Calibration Program

As stated in the previous paragraph, the average power inhibit function causes the internal step attenuator to switch in 110 dB (90 dB on HP 83731A/32A) of attenuation whenever frequency or power level is changed. This causes extra wear on the step attenuator.

When you know the various frequencies and power levels that you will be using in a test routine, the following program can be used to gather the CW calibration values for frequency/power level pairs. After activating the special pulse modulation mode, calibration values can be sent for each frequency/power level pair and the CW calibration will be eliminated. This program provides an alternative to turning the average power inhibit function on and, therefore, minimizes wear on the step attenuator.

When the calibration portion of the program is run, you should disconnect average power sensitive circuitry from the RF OUTPUT to avoid damaging it. During the calibration, using a substitute load with the exact characteristics as the circuit load will preserve the specified CW-to-pulse level accuracy. The calibration should not be performed until the instrument has had sufficient time to warm up (usually 30 minutes). The calibration data remains valid as long as the ambient temperature remains stable. CW-to-pulse level accuracy degrades nominally by 0.07 dB/°C. For best accuracy, the calibration should be repeated whenever the ambient temperature changes.

The time the calibration routine takes to obtain the CW calibration values is equivalent to the normal frequency and power level switching times. In special pulse modulation mode, frequency and power level changes (without an attenuator range change) occur faster than during normal pulsed operation.

When running the following program, once the calibration is complete and special pulse modulation mode is entered, the following events will happen during pulsed frequency switching:

- The frequency ("FREQ"; Freqs(I); "MHZ") command is sent: This causes the synthesizer to change frequency and the power level will drop to the minimum vernier level. The output power remains pulsed.
- The power level ("POW"; Powers(I); "DBM") command is sent: This causes the synthesizer to adjust *only* the attenuator range. The vernier remains at its minimum level.
- The ("DIAG:IBUS 23,"; Verniers(I)) command is sent: This adjusts the vernier level to its correct level. The synthesizer is now pulsing at the correct frequency and power level.

NOTE

The preceding commands must always be executed in the order presented for proper instrument operation. However, there are two cases when use of the frequency and/or power level commands can be minimized.

Case 1 - If the synthesizer will only be operating at one frequency, the frequency command only needs to be sent once.

Case 2 - If the synthesizer will only be operating at one attenuator range, the power level command only needs to be sent once.

```
10 OPTION BASE 1
20 DIM Freqs (100), Powers (100), Verniers (100)
30 Num_points=4
40 DATA 1000, O, 1330, -4, 1750, 2000, 12
50 OUTPUT 719;"*RST"
60 OUTPUT 719;"PULM:SOUR EXT"
70 OUTPUT 719;"PULM:EXT:POL NORM"
80 OUTPUT 719;"PULM:STAT ON"
90 INPUT "DISCONNECT AVERAGE POWER SENSITIVE DEVICES FROM THE RF OUTPUT, THEN PRESS ENTER", A.
100 !
```

```
110 FOR I=1 TO Num_points
              120 READ Freqs (I), Powers (I)
              130 OUTPUT 719; "FREQ "; Freqs(I); "MHZ; POW "; Powers(I); "DBM"
              140 OUTPUT 719; "DIAG: IBUS? 23"
              150 ENTER 719; Vernier(I)
              160 NEXT I
              170 !
              180 OUTPUT 719; "DIAG: IBUS 73,16"
              190 INPUT "CONNECT DUT TO OUTPUT AND PRESS ENTER.", A
              200 PRINT
              210 !
              220 FOR I=1 TO Num_points
              230 OUTPUT 719; "FREQ "; Freqs(I); "MHZ; POW "; Powers(I); "DBM"
              240 OUTPUT 719; "DIAG: IBUS 23,"; Verniers(I)
              250 PRINT "SYNTHESIZER FREQUENCY IS CURRENTLY "; Freqs(I); "MHz,
                     AND POWER LEVEL IS CURRENTLY "; Powers(I); " dBm."
              260 IF I=Num_points THEN GOTO 300
              270 INPUT "PRESS ENTER WHEN YOU ARE READY TO GO TO THE NEXT
                     FREQUENCY/POWER LEVEL PAIR.",A
              280 NEXT I
              290
              300 INPUT "PRESS ENTER TO EXIT SPECIAL PULSE MODULATION MODE.", A
              310 !
              320 OUTPUT 719;"*RST"
              330 PRINT
              340 PRINT "NOTE: CYCLE SYNTHESIZER POWER OFF AND ON TO TERMINATE
                     SPECIAL PULSE MODULATION MODE."
              350 PRINT
              360 PRINT "END OF PROGRAM"
              370 END
                 10:
Program Comments
                              Sets the lowest element of all arrays to 1.
                 20:
                              Dimensions arrays.
                 30:
                              Sets variable "Num_points" to 4 for this example.
                              "Num_points" must be equal to the number of
                              frequency/power level pairs in the DATA statement.
                 40:
                              The frequency/power level pairs to be used by this program.
                              The first number and every other number is a frequency; the
```

50: Presets the synthesizer. 60: Selects external pulse mode for this example. Modify this statement for your desired pulse mode. 70: Selects normal pulse polarity for this example. Modify this statement for your desired pulse polarity. 80: Turns pulse modulation on. 120: Reads frequency into the "I" position of array "Freqs" and power level into the "I" position of array "Powers". 130: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 140: Queries the vernier DAC setting at the current frequency/power level. 150: Reads vernier DAC setting into the "I" position of array "Verniers". 180: Activates special pulse modulation mode. 230: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers". 320: OUTPUT 719; "*RST"		second number and every other number is a corresponding power level.			
statement for your desired pulse mode. 70: Selects normal pulse polarity for this example. Modify this statement for your desired pulse polarity. 80: Turns pulse modulation on. 120: Reads frequency into the "I" position of array "Freqs" and power level into the "I" position of array "Powers". 130: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 140: Queries the vernier DAC setting at the current frequency/power level. 150: Reads vernier DAC setting into the "I" position of array "Verniers". 180: Activates special pulse modulation mode. 230: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers".	50:	Presets the synthesizer.			
statement for your desired pulse polarity. 80: Turns pulse modulation on. 120: Reads frequency into the "I" position of array "Freqs" and power level into the "I" position of array "Powers". 130: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 140: Queries the vernier DAC setting at the current frequency/power level. 150: Reads vernier DAC setting into the "I" position of array "Verniers". 180: Activates special pulse modulation mode. 230: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers".	60:				
Reads frequency into the "I" position of array "Freqs" and power level into the "I" position of array "Powers". Sets synthesizer frequency and power level to the values in the arrays specified by "I". Queries the vernier DAC setting at the current frequency/power level. Reads vernier DAC setting into the "I" position of array "Verniers". Activates special pulse modulation mode. Sets synthesizer frequency and power level to the values in the arrays specified by "I". Sets vernier DAC to the value in the "I" position of array "Verniers".	70:				
power level into the "I" position of array "Powers". 130: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 140: Queries the vernier DAC setting at the current frequency/power level. 150: Reads vernier DAC setting into the "I" position of array "Verniers". 180: Activates special pulse modulation mode. 230: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers".	80:	Turns pulse modulation on.			
arrays specified by "I". 140: Queries the vernier DAC setting at the current frequency/power level. 150: Reads vernier DAC setting into the "I" position of array "Verniers". 180: Activates special pulse modulation mode. 230: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers".	120:				
frequency/power level. Reads vernier DAC setting into the "I" position of array "Verniers". Activates special pulse modulation mode. Sets synthesizer frequency and power level to the values in the arrays specified by "I". Sets vernier DAC to the value in the "I" position of array "Verniers".	130:				
"Verniers". 180: Activates special pulse modulation mode. 230: Sets synthesizer frequency and power level to the values in the arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers".	140:	"			
Sets synthesizer frequency and power level to the values in the arrays specified by "I". Sets vernier DAC to the value in the "I" position of array "Verniers".	150:				
arrays specified by "I". 240: Sets vernier DAC to the value in the "I" position of array "Verniers".	180:	Activates special pulse modulation mode.			
"Verniers".	230:	· · · · · · · · · · · · · · · · · · ·			
320: OUTPUT 719; "*RST"	240:				
	320:	OUTPUT 719; "*RST"			

Query Syntax

 $[\, {\tt SOURce} \big[\, {\tt 1}\, \big] \, : \, \big] {\tt POWer} \, : \, {\tt PROTection} \, : \, {\tt STATe} ?$

Returned format:

state < NL >

Where:

• state ::= "+1" if the average power inhibit function is currently on or "+0" if the average power inhibit function is currently off.

See Also

[SOURce[1]:]POWer[:LEVel] [SOURce[1]:]PULM:SOURce [SOURce[1]:]PULM:STATe

RF Output Control Commands

21

Status Register Commands

Status Register Commands

This sub-chapter contains detailed information on all programming commands pertaining to the status register.

The Status Register System

You can find out the state of certain instrument hardware and firmware events and conditions by programming the status register system. The status register system is arranged in a hierarchical order. Three lower status groups provide information to the status byte group. The status byte group is used to determine the general nature of an event and the lower status groups are used to determine the specific nature of the event. A status group is a set of related registers whose contents are programmed in order to produce status summary bits. The hierarchy of the status register system is shown in Figure 21-1.

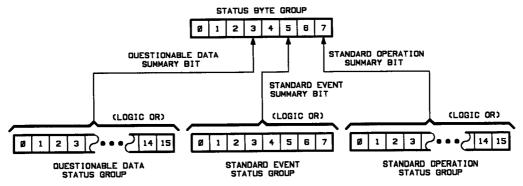


Figure 21-1. Status Register System Hierarchy

General Status Group Model

Figure 21-2 shows the structure of a typical status group. Corresponding bits in the Condition Register are filtered by the Negative and Positive Transition Registers and stored in the Event Register. The contents of the Event Register are logically ANDed with the contents of the Enable Register and the result is logically ORed to produce a status summary bit.

The Status Register System

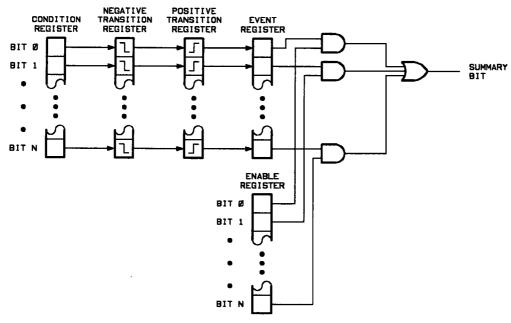


Figure 21-2. General Status Group Model

Note that each status group does not necessarily contain all of the registers shown in Figure 21-2. For example, the Standard Event status group only contains an Event Register and an Enable Register. Each of the synthesizer status groups consists of some or all of the registers explained below:

Condition Register

A condition register continuously monitors the hardware and firmware status of the synthesizer. There is no latching or buffering for a condition register; it is updated in real time.

Negative Transition Register

A negative transition register specifies the bits in the condition register that will set corresponding bits in the event register when the condition bit changes from $1\ \text{to}\ 0$.

Positive Transition Register

A positive transition register specifies the bits in the condition register that will set corresponding bits in the event register when the condition bit changes from 0 to 1.

Event Register

An event register latches transition events from the condition register as specified by the positive and negative transition registers. Bits in the event register are latched, and once set, they remain set until cleared by either querying the register contents or sending the "*CLS" command.

Enable Register

An enable register specifies the bits in the event register that can generate a summary bit. The synthesizer logically ANDs corresponding bits in the event and enable registers, and ORs all the resulting bits to produce a summary bit. Summary bits are, in turn, used by the Status Byte group.

Synthesizer Status Groups

The synthesizer status register system consists of the Status Byte group and three other status groups that provide input to the Status Byte group. The following paragraphs explain the information that is provided by each status group.

The Status Byte Group

The Status Byte group is used to determine the general nature of an instrument event or condition. The Status Byte group consists of the Service Request Enable register and the Status Byte. The bits in the Status Byte provide you with the following information:

Bit Description

- 0 2 These bits are always set to 0.
- 3 A 1 in this bit position indicates that the Questionable Data summary bit has been set. The Questionable Event register can then be read to determine the specific condition that caused this bit to be set.
- A 1 in this bit position indicates that the synthesizer has data ready in its output queue. Note that there are no lower status groups that provide input to this bit.
- A 1 in this bit position indicates that the Standard Event summary bit has been set. The Standard Event Status register can then be read to determine the specific event that caused this bit to be set.

The Status Register System

- 6 A 1 in this bit position indicates that the instrument has at least one reason to require service. The bits in the Status Byte are logically ANDed with the Service Request Enable register and the result is ORed and input to this bit.
- 7 A 1 in this bit position indicates that the Standard Operation summary bit has been set. The Operation Event register can then be read to determine the specific condition that caused this bit to be set.

Group

The Standard Event Status The Standard Event Status group is used to determine the specific event that set bit 5 in the Status Byte. The Standard Event Status group consists of the Standard Event Status register (an Event register) and the Standard Event Status Enable register. The bits in the Standard Event Status register provide you with the following information:

Bit Description 0 A one in this bit position indicates that all pending synthesizer operations were completed following execution of the "*OPC" command. This bit is always set to 0. 1 2 A one in this bit position indicates that a query error has occurred. Query errors have SCPI error numbers from -499 to -400. 3 A one in this bit position indicates that a device dependent error has occurred. Device dependent errors have SCPI error numbers from -399 to -300 and 1 to 32767. 4 A one in this bit position indicates that an execution error has occurred. Execution errors have SCPI error numbers from -299 to -200. 5 A one in this bit position indicates that a command error has occurred. Command errors have SCPI error numbers from -199 to -100. 6 A one in this bit position indicates that at least one front panel key (except the LINE switch) has been pressed (even if the synthesizer is in Local Lockout (LLO) mode). 7 A one in this bit position indicates that the synthesizer has been

turned off and then on.

The Standard Operation Status Group

The Standard Operation status group is used to determine the specific condition that set bit 7 in the Status Byte. The Standard Operation status group consists of the Operation Condition register, Operation Negative Transition register, Operation Positive Transition register, Operation Event register, and Operation Event Enable register. The bits in the Operation Event register provide you with the following information:

Bit Description

- O A one in this bit position indicates that the YIG oscillator calibration is currently being run.
- A one in this bit position indicates that the synthesizer hardware is settling (for example, the power level is changing).
- 2 6 These bits are always set to 0.
- A one in this bit position indicates that the synthesizer level correct routine is being run.
- 8 15 These bits are always set to 0.

The Questionable Data Status Group The Questionable Data status group is used to determine the specific condition that set bit 3 in the Status Byte. The Questionable Data status group consists of the Questionable Condition register, Questionable Negative Transition register, Questionable Positive Transition register, Questionable Event register, and Questionable Event Enable register. The bits in the Questionable Event register provide you with the following information:

Bit Description

- 0 2 These bits are always set to 0.
- 3 A one in this bit position indicates that the RF output power might be uncalibrated or unleveled.
- A one in this bit position indicates that the internal frequency reference oven is cold (Option 1E5 only).
- A one in this bit position indicates that the synthesizer output frequency might be uncalibrated.
- 6 This bit is always set to 0.
- A one in this bit position indicates that one or more of the modulations might be uncalibrated.

The Status Register System

- 8 This bit is set to 1 whenever bits 3, 5, or 7 in this register are set to 1.
- 9 15 These bits are always set to 0.

10 OUTPUT 719; "STAT: OPER: PTR O"
20 OUTPUT 719; "STAT: OPER: NTR 2"
30 OUTPUT 719; "STAT: OPER: ENAB 2" "

Status Register System Programming Example

In the following example, the Status Register System is programmed to set bit 6 of the status byte (the SRQ bit) high after the synthesizer hardware has settled. Bit 6 is monitored and, once it is set high, the controller prints "HARDWARE IS SETTLED" on its screen.

```
40 OUTPUT 719;"*SRE 128" "
                      50 PRINT "SRQ IS SET UP" "
                       60 OUTPUT 719;"*CLS" "
                       70 A=SPOLL(719)"
                       80 OUTPUT 719; "FREQ 2.123GHz; POW -1.23dBm" "
                       90 Wait4srq: A=SPOLL(719)"
                       100 IF A=O THEN GOTO Wait4srq"
                       110 PRINT "HARDWARE IS SETTLED" '
                       120 END"
Program Comments
                   10:
                                Disable all bits in the Operation Positive Transition register.
                   20:
                                Enable bit 2 (the "hardware settling" bit) in the Operation
                                Negative Transition register.
                   30:
                                Enable bit 2 (the "hardware settling" bit) in the Operation
                                Event Enable register.
                   40:
                                Enable bit 7 (the OPERation summary bit) in the Service
                                Request Enable register to cause an SRQ.
                   60:
                                 Clear any previous status conditions.
                   70:
                                Clear old SRQ state.
```

80: Set synthesizer output frequency and power.

90: Poll the SRQ state.

100: If no SRQ has been generated, keep polling.

*CLS (Clear Status Command)

*CLS

The "*CLS" command clears the Operation Event register, Questionable Event register, and the Standard Status Event register.

Sending the "*CLS" command sets all bits in the Operation Event register, Questionable Event register, and the Standard Status Event register to 0. Clearing these registers causes bits 3, 5, and 7 in the Status Byte register to be temporarily set to 0. The "*CLS" command also clears the HP-IB error reporting queue and the Request-for-OPC flag.

If the *CLS command immediately follows a Program Message Terminator, the output queue and the MAV bit will also be cleared.

The *CLS command does not clear data memories or any instrument settings.

See Also

*ESR?
STATus:OPERation[:EVENt]?
STATus:QUEStionable[:EVENt]?
*STB?

*ESE (Standard Event Status Enable)

*ESE number

The "*ESE" command sets the Standard Event Status Enable register. This register selects which bits in the Standard Event Status Register can set bit 5 in the status byte.

The parameter is as follows:

number

The number representing the value of bits in the Standard Event Status Enable register to be set. *number* can be from 0 to 255.

Bits in the Standard Event Status Enable register are logically ANDed with bits in the Standard Event Status register. If the result is 1, bit 5 in the status byte is set.

The decimal value of each bit in the Standard Event Status Enable register is shown in the following table.

Table 21-1. Standard Event Status Enable Register Bit Definitions

Bit	Weight	Enables		
7	128	PON - Power on occurred.		
6	64	URQ - User request (key pressed).		
5	32	CME - Command error occurred.		
4	16	EXE - Execution error occurred.		
3	8	DDE - Device dependent error occurred.		
2	4	QYE - Query error occurred.		
1	2	RQC - Request control (not used).		
0	1 1	OPC - Operation complete.		

At power on, the Standard Event Status Enable register is set to 0 unless the *PSC command has been set to 0 (zero).

*ESE (Standard Event Status Enable)

Query Syntax

*ESE?

Returned format:

number < NL >

Where:

• *number* ::= The current value of the Standard Event Status Enable register.

See Also

- *CLS
- *ESR?
- *OPC
- *PSC
- *SRE
- *STB?

*ESR? (Standard Event Status Register Query)

*ESR?

The "*ESR?" query returns the contents of the Standard Event Status register.

When you read the contents of the Event Status register, the value returned is the total bit weights of all the bits that are high at the time you read it.

The decimal value of each bit (the bit weight) in the Event Status register is shown in the following table.

Table 21-2. Standard Event Status Register Bit Definitions

Bit	Weight	Name	Condition
7	128	PON	0 = no OFF to ON transition has occurred with the synthesizer
ŀ			power.
			1 = an OFF to ON transition has occurred with the synthesizer
			power.
6	64	URQ	0 = no front panel key has been pressed.
			1 = front panel key has been pressed.
5	32	CME	0 = no command errors have been detected.
1			1 = a command error has been detected.
4	16	EXE	0 = no execution error has been detected.
			1 = an execution error has been detected.
3	8	DDE	0 = no device dependent errors have been detected.
			1 = a device dependent error has been detected.
2	4	QYE	C = no query errors have been detected.
			1 = a query error has been detected.
1	2	RQC	Not used - always 0.
0	1	OPC	0 = operation is not complete.
L			1 = operation is complete.

The Event Status register is cleared (set to 0) when the "*CLS" command is sent or after "*ESR?" is executed.

*ESR? (Standard Event Status Register Query)

Status Reporting

When an error is reported to the HP-IB error queue, one of the Standard Event Status Register error bits will also be set. Which bit is set depends on the value of the error number. If the error number is from -199 to -100, the Command Error bit is set. If the error number is from -299 to -200, the Execution Error bit is set. If the error number is from -399 to -300 or from 1 to 32767, the Device Dependent Error bit is set. If the error number is from -499 to -400, the Query Error bit is set.

See Also

- *CLS
- *ESE
- *OPC
- *SRE
- *STB?

*PSC (Power-On Status Clear)

*PSC
$$\left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\}$$

The "*PSC" command enables or disables the automatic power-on clearing of the Service Request Enable (*SRE) register and the Standard Event Status Enable (*ESE) register. It also enables or disables the automatic power-on presetting of the SCPI STATus transition registers and enable registers.

The parameters are as follows:

O Disables clearing of Service Request Enable (*SRE) register

and Standard Event Status Enable (*ESE) register at power up as well as power-on presetting of the SCPI STATus

transition registers and enable registers.

1 Enables clearing of Service Request Enable (*SRE) register

and Standard Event Status Enable (*ESE) register at power up as well as power-on presetting of the SCPI STATus

transition registers and enable registers.

The factory preset condition for the "*PSC" command is "1" (clearing enabled). Once the *PSC value is changed, it is not affected by pressing the PRESET key or sending the "*RST" or "SYST:PRES" commands.

Query Syntax

*PSC?

Returned format:

state<NL>

*PSC (Power-On Status Clear)

Where:

• *state* ::= "+0" if clearing of the *SRE and *ESE registers at power-up is disabled or "+1" if clearing of the *SRE and *ESE registers at power-up is enabled.

See Also

*ESE

*SRE

*SRE (Service Request Enable)

*SRE number

The "*SRE" command sets the Service Request Enable register bits.

The parameter is as follows:

number

The number representing the value of bits in the Service Request Enable register to be set. *number* can be from 0 to 191.

The Service Request Enable register contains a mask value for the bits to be enabled to produce an SRQ in the status byte. A 1 in the Service Request Enable register will enable the corresponding bit in the status byte. A 0 will disable the bit.

The decimal value of each bit in the Service Request Enable register is shown in the following table.

Table 21-2. Service Request Enable Register Bit Definitions

Bit	Weight	Enables
7	128	SCPI operation summary bit.
6	64	Cannot be set.
5	32	ESB - Event Status Bit.
4	16	MAV - Message Available.
3	8	SCPI questionable summary bit.
2	4	Don't care.
1	2	Don't care.
0	1	Don't care.

At power on, the Service Request Enable register is set to 0 unless the *PSC command has been set to 0.

Query Syntax

*SRE?

Returned format:

number < NL >

Where:

• number ::= The current value of the Service Request Enable register.

See Also

- *ESE
- *ESR?
- *PSC
- *STB?

STATus:OPERation:CONDition?

STATus: OPERation: CONDition?

The "STATus:OPERation:CONDition?" query returns the contents of the Operation Condition register.

The Operation Condition register is constantly updated as operational conditions occur. No conditions are saved in this register.

When you read the contents of the Operation Condition register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Operation Condition register using this command, the contents of the register are not altered.

The decimal value of each bit (the bit weight) in the Operation Condition register is shown in the following table.

STATus: OPERation: CONDition?

Table 21-3. Operation Condition Register Bit Definitions

Bit	Weight	Condition
15	32768	Not used - always 0.
14	16384	Not used - always 0.
13	8192	Not used - always 0.
12	4096	Not used - always 0.
11	2048	Not used - always 0.
10	1024	Not used - always 0.
9	512	Not used - always 0.
8	256	Not used - always 0.
7	128	0 = instrument is not level correcting.
		1 -instrument is level correcting.
6	64	Not used - always 0.
5	32	Not used - always 0.
4	16	Not used - always 0.
3	8	Not used - always 0.
2	4	Not used - always 0.
1	2	0 = instrument is not settling.
		1 = instrument is settling.
0	1	0 = instrument is not calibrating.
		1 = instrument is calibrating.

See Also

STATus:OPERation[:EVENt]? STATus:OPERation:ENABle STATus:OPERation:PTRansition STATus:OPERation:NTRansition

STATus:OPERation:ENABle

STATus: OPERation: ENABle number

The "STATus:OPERation:ENABle" command sets the contents of the Operation Event Enable register.

The parameter is as follows:

number

The number representing the value of bits in the Operation Event Enable register to be set. The number must be from

0 to 32767.

The Operation Event Enable register contains a mask value for the bits to be enabled to set bit 7 in the status byte. A 1 in the Operation Event Enable register will enable the corresponding bit in the Operation Event register to set bit 7 in the status byte. A 0 will disable the bit.

The decimal value of each bit (the bit weight) in the Operation Event Enable register is shown in the following table.

Table 21-4. Operation Event Enable Register Bit Definitions

Bit	Weight	Condition	
15	32768	X - don't care.	
14	16384	X - don't care.	
13	8192	X - don't care.	
12	4096	X - don't care.	
11	2048	X - don't care.	
10	1024	X - don't care.	
9	512	X - don't care.	
8	256	X - don't care.	
7	128	0 = inhibit a "level correcting" event from setting bit 7 in the status byte. 1 = enable a "level correcting" event to set bit 7 in the status byte.	
6	64	X - don't care.	
5	32	X - don't care.	
4	16	X - don't care.	
3	8	X - don't care.	
2	4	X - don't care.	
1	2	O = inhibit a "settling" event from setting bit 7 in the status byte.	
		1 = enable a "settling" event to set bit 7 in the status byte.	
0	1	 0 = inhibit a "calibrating" event from setting bit 7 in the status byte. 1 = enable a "calibrating" event to set bit 7 in the status byte. 	

Query Syntax

STATus: OPERation: ENABle?

Returned format: number<NL>

Where:

• number :: - The current value of the Operation Event Enable register.

See Also

STATus:OPERation[:EVENt]? STATus:OPERation:CONDition? STATus:OPERation:PTRansition STATus:OPERation:NTRansition *STB?

STATus:OPERation[:EVENt]?

STATus: OPERation[:EVENt]?

The "STATus:OPERation[:EVENt]?" query returns the contents of the Operation Event register.

The Operation Event register holds a record of the state changes in the Operation Condition register that were defined in the Operation Edge Registers.

When you read the contents of the Operation Event register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Operation Event register using this command, the register is cleared (set to zero).

The decimal value of each bit (the bit weight) in the Operation Event register is shown in the following table.

Table 21-5. Operation Event Register Bit Definitions

Bit	Weight	Condition	
15	32768	Not used - always 0.	
14	16384	Not used - always 0.	
13	8192	Not used - always 0.	
12	4096	Not used - always 0.	
11	2048	Not used - always 0.	
10	1024	Not used - always 0.	
9	512	Not used - always 0.	
8	256	Not used - always 0.	
7	128	O = a "level correcting" event has not occurred in the Operation Condition register that is defined by the Operation Edge registers. 1 = a "level correcting" event has occurred in the Operation Condition register that is defined by the Operation Edge registers.	
6	64	Not used - always 0.	
5	32	Not used - always 0.	
4	16	Not used - always 0.	
3	8	Not used - always 0.	
2	4	Not used - always D.	
1	2	O = a "settling" event has not occurred in the Operation Condition register that is defined by the Operation Edge registers. 1 = a "settling" event has occurred in the Operation Condition register that is defined by the Operation Edge registers.	
0	1	 0 - a "calibrating" event has not occurred in the Operation Condition register that is defined by the Operation Edge registers. 1 - a "calibrating" event has occurred in the Operation Condition register that is defined by the Operation Edge registers. 	

The Operation Event register is also set to 0 after the "*CLS" command is sent.

STATus: OPERation[:EVENt]?

See Also

STATus:OPERation:CONDition? STATus:OPERation:ENABle STATus:OPERation:PTRansition STATus:OPERation:NTRansition

STATus:OPERation:NTRansition

STATus: OPERation: NTRansition number

The "STATus:OPERation:NTRansition" command is used to define which bits in the Operation Condition register will set the corresponding bit in the Operation Event register on a one to zero state change.

The parameter is as follows:

number

The number representing the value of bits in the Operation Negative Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Operation Negative Transition register is shown in the following table.

STATus: OPERation: NT Ransition

Table 21-6. Operation Negative Transition Register Bit Definitions

Bit	Weight	Condition
15	32768	X - don't care.
14	16384	X - don't care.
13	8192	X - don't care.
12	4096	X - don't care.
11	2048	X - don't care.
10	1024	X - don't care.
9	512	X - don't care.
8	256	X - don't care.
7	128	0 = inhibit a one to zero state change of the "level correcting" bit from setting bit 7 in the Operation Event register. 1 = enable a one to zero state change of the "level correcting" bit to set bit 7 in the
		Operation Event register.
6	64	X - don't care.
5	32	X - don't care.
4	16	X - don't care.
3	8	X - don't care.
2	4	X - don't care.
1	2	 0 = inhibit a one to zero state change of the "settling" bit from setting bit 1 in the Operation Event register. 1 = enable a one to zero state change of the "settling" bit to set bit 1 in the Operation Event register.
0	1	O = inhibit a one to zero state change of the "calibrating" bit from setting bit O in the Operation Event register. 1 = enable a one to zero state change of the "calibrating" bit to set bit O in the Operation Event register.

Query Syntax

STATus: OPERation: NTRansition?

Returned format: number<NL>

Where:

• *number* ::= The current value of the Operation Negative Transition register.

See Also

STATus:OPERation[:EVENt]? STATus:OPERation:CONDition? STATus:OPERation:ENABle STATus:OPERation:PTRansition

STATus:OPERation:PTRansition

STATus: OPERation: PTRansition number

The "STATus:OPERation:PTRansition" command is used to define which bits in the Operation Condition register will set the corresponding bit in the Operation Event register on a zero to one state change.

The parameter is as follows:

number

The number representing the value of bits in the Operation Positive Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Operation Positive Transition register is shown in the following table.

Table 21-7. Operation Positive Transition Register Bit Definitions

Weight	Condition	
32768	X - don't care.	
16384	X - don't care.	
8192	X - don't care.	
4096	X - don't care.	
2048	X - don't care.	
1024	X - don't care.	
512	X - don't care.	
256	X - don't care.	
128	0 = inhibit a zero to one state change of the "level correcting" bit from setting bit 7 in the Operation Event register.	
	1 = enable a zero to one state change of the "level correcting" bit to set bit 7 in the Operation Event register.	
64	X - don't care.	
32	X - don't care.	
16	X - don't care.	
8	X - don't care.	
4	X - don't care.	
2	0 = inhibit a zero to one state change of the "settling" bit from setting bit 1 in the	
	Operation Event register. 1 = enable a zero to one state change of the "settling" bit to set bit 1 in the Operation Event register.	
1	 0 = inhibit a zero to one state change of the "calibrating" bit from setting bit 0 in the Operation Event register. 1 = enable a zero to one state change of the "calibrating" bit to set bit 0 in the Operation Event register. 	
	16384 8192 4096 2048 1024 512 256 128	

Query Syntax

STATus: OPERation: PTRansition?

Returned format: number<NL>

Status Register Commands

STATus: OPERation: PTRansition

Where:

• number ::= The current value of the Operation Positive Transition register.

See Also

STATus:OPERation[:EVENt]? STATus:OPERation:CONDition? STATus:OPERation:ENABle STATus:OPERation:NTRansition

STATus:PRESet

STATus: PRESet

The "STATus:PRESet" command sets the following status registers to a known state:

Operation Event Enable register Operation Negative Transition register Operation Positive Transition register Questionable Event Enable register Questionable Negative Transition register Questionable Positive Transition register

as shown in the following table.

When the "STATus:PRESet" command is sent, the status registers are affected

Table 21-8. Status Register Preset Conditions

Register	Preset Value
Operation Event Enable register	0
Operation Negative Transition register	0
Operation Positive Transition register	32767
Questionable Event Enable register	0
Questionable Negative Transition register	0
Questionable Positive Transition register	32767

STATus:PRESet

See Also

STATus:OPERation[:EVENt]? STATus:OPERation:CONDition? STATus:OPERation:ENABle STATus:OPERation:NTRansition STATus:OPERation:PTRansition STATus:QUEStionable[:EVENt]? STATus:QUEStionable:CONDition? STATus:QUEStionable:ENABle STATus:QUEStionable:NTRansition STATus:QUEStionable:PTRansition *STATus:QUEStionable:PTRansition

STATus:QUEStionable:CONDition?

STATus: QUEStionable: CONDition?

The "STATus:QUEStionable:CONDition?" query returns the contents of the Questionable Condition register.

The Questionable Condition register is constantly updated as questionable conditions change. No conditions are saved in this register.

When you read the contents of the Questionable Condition register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Questionable Condition register using this command, the contents of the register are not altered.

The decimal value of each bit (the bit weight) in the Questionable Condition register is shown in the following table.

Table 21-9. Questionable Condition Register Bit Definitions

Bit	Weight	Condition		
15	32768	Not used - always O.		
14	16384	Not used - always 0.		
13	8192	Not used - always 0.		
12	4096	Not used - always O.		
11	2048	Not used - always 0.		
10	1024	Not used - always 0.		
9	512	Not used - always 0.		
8	256	0 = instrument is calibrated. 1 = instrument is un-calibrated.		
7	128	0 = modulation circuitry is calibrated. 1 = modulation circuitry is un-calibrated.		
6	64	Not used - always D.		
5	32	0 = frequency circuitry is locked. 1 = frequency circuitry is unlocked.		
4	16	0 = internal frequency reference oven has reached operating temperature. 1 = internal frequency reference oven is cold.		
3	8	D = output power is calibrated or leveled. 1 = output power is un-calibrated or unleveled.		
2	4	Not used - always 0.		
1	2	Not used - always 0.		
0	1 1	Not used - always 0.		

STATus:QUEStionable:CONDition?

See Also

STATus:QUEStionable[:EVENt]? STATus:QUEStionable:ENABle STATus:QUEStionable:PTRansition STATus:QUEStionable:NTRansition

STATus:QUEStionable:ENABle

STATus:QUEStionable:ENABle number

The "STATus:QUEStionable:ENABle" command sets the contents of the Questionable Event Enable register.

The parameter is as follows:

number

The number representing the value of bits in the

Questionable Event Enable register to be set. The number

must be from 0 to 32767.

The Questionable Event Enable register contains a mask value for the bits to be enabled to set bit 3 in the status byte. A 1 in the Questionable Event Enable register will enable the corresponding bit in the Questionable Event register to set bit 3 in the status byte. A 0 will disable the bit.

The decimal value of each bit (the bit weight) in the Questionable Event Enable register is shown in the following table.

STATus:QUEStionable:ENABle

Table 21-10. Questionable Event Enable Register Bit Definitions

Bit	Weight	Condition
15	32768	X - don't care.
14	16384	X - don't care.
13	8192	X - don't care.
12	4096	X - don't care.
11	2048	X - don't care.
10	1024	X - don't care.
9	512	X - don't care.
8	256	D = inhibit an "instrument calibration" event from setting bit 3 in the status byte.
		1 = enable an "instrument calibration" event to set bit 3 in the status byte.
7	128	0 = inhibit a "modulation circuitry calibration" event from setting bit 3 in the status
		byte.
		1 = enable a "modulation circuitry calibration" event to set bit 3 in the status byte.
6	64	X - don't care.
5	32	O = inhibit a "frequency circuitry lock" event from setting bit 3 in the status byte.
	1	1 = enable a "frequency circuitry lock" event to set bit 3 in the status byte.
4	16	0 = inhibit a "reference oven temperature" event from setting bit 3 in the status byte.
		1 = enable a "reference oven temperature" event to set bit 3 in the status byte.

Table 21-10. Questionable Event Enable Register Bit Definitions (continued)

Bit	Weight	Condition	
3	8	0 = inhibit an "output power calibration" event from setting bit 3 in the status byte.	
		1 - enable an "output power calibration" event to set bit 3 in the status byte.	
2	4	X - don't care.	
1	2	X - don't care.	
0	1 1	X - don't care.	

Query Syntax

STATus: QUEStionable: ENABle?

Returned format:

number<NL>

Where:

• *number* ::= The current value of the Questionable Event Enable register.

See Also

STATus:QUEStionable:EVENt]? STATus:QUEStionable:CONDition? STATus:QUEStionable:PTRansition STATus:QUEStionable:NTRansition

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable[:EVENt]?

The "STATus:QUEStionable[:EVENt]?" query returns the contents of the Questionable Event register.

The Questionable Event register holds a record of the state changes in the Questionable Condition register that were defined in the Questionable Edge Registers.

When you read the contents of the Questionable Event register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Questionable Event register using this command, the register is cleared (set to zero).

The decimal value of each bit (the bit weight) in the Questionable Event register is shown in the following table.

STATus:QUEStionable[:EVENt]?

Table 21-11. Questionable Event Register Bit Definitions

D:a	Bit Weight Condition		
	Weight		
15	32768	Not used - always 0.	
14	16384	Not used - always 0.	
13	8192	Not used - always 0.	
12	4096	Not used - always O.	
11	2048	Not used - always 0.	
10	1024	Not used - always 0.	
9	512	Not used - always 0.	
8	256	O = an "instrument calibration" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers. 1 = an "instrument calibration" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers.	
7	128	O = a "modulation circuitry calibration" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers. 1 = a "modulation circuitry calibration" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers.	
6	64	Not used - always D.	
5	32	O = a "frequency circuitry lock" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers. 1 = a "frequency circuitry lock" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers.	
4	16	O - a "reference oven temperature" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers. 1 - a "reference oven temperature" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers.	
3	8	 0 = an "output power calibration" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers. 1 = an "output power calibration" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers. 	
2	4	Not used - always 0.	
1	2	Not used - always 0.	
0	1	Not used - always 0.	

The Questionable Event register is also set to 0 after the "*CLS" command is sent.

STATus:QUEStionable[:EVENt]?

See Also

STATus:QUEStionable:CONDition? STATus:QUEStionable:ENABle STATus:QUEStionable:PTRansition STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition number

The "STATus:QUEStionable:NTRansition" command is used to define which bits in the Questionable Condition register will set the corresponding bit in the Questionable Event register on a one to zero state change.

The parameter is as follows:

number

The number representing the value of bits in the Questionable Negative Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Questionable Negative Transition register is shown in the following table.

STATus:QUEStionable:NTRansition

Table 21-12. Questionable Negative Transition Register Bit Definitions

Bit	Weight	Condition	
15	32768	X - don't care.	
14	16384	X - don't care.	
13	8192	X - don't care.	
12	4096	X - don't care.	
11	2048	X - don't care.	
10	1024	X - don't care.	
9	512	X - don't care.	
8	256	0 = inhibit a one to zero state change of the "instrument calibration" bit from setting bit 8 in the Questionable Event register. 1 = enable a one to zero state change of the "instrument calibration" bit to set bit 8 in the Questionable Event register.	
7	128	0 = inhibit a one to zero state change of the "modulation circuitry calibration" bit from setting bit 7 in the Questionable Event register. 1 = enable a one to zero state change of the "modulation circuitry calibration" bit to set bit 7 in the Questionable Event register.	
6	64	X - don't care.	
5	32	O = inhibit a one to zero state change of the "frequency circuitry lock" bit from setting bit 5 in the Questionable Event register. 1 = enable a one to zero state change of the "frequency circuitry lock" bit to set bit 5 in the Questionable Event register.	
4	16	0 = inhibit a one to zero state change of the "reference oven temperature" bit from setting bit 4 in the Questionable Event register. 1 = enable a one to zero state change of the "reference oven temperature" bit to set bit 4 in the Questionable Event register.	
3	8	O = inhibit a one to zero state change of the "output power calibration" bit from setting bit 3 in the Questionable Event register. 1 = enable a one to zero state change of the "output power calibration" bit to set bit 3 in the Questionable Event register.	
2	4	X - don't care.	
1	2	X - don't care.	
0	1	X - don't care.	

Query Syntax

STATus: QUEStionable: NTRansition?

Returned format:

number<NL>

Where:

• *number* ::= The current value of the Questionable Negative Transition register.

See Also

STATus:QUEStionable:EVENt]? STATus:QUEStionable:CONDition? STATus:QUEStionable:ENABle STATus:QUEStionable:PTRansition *STB?

STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition number

The "STATus:QUEStionable:PTRansition" command is used to define which bits in the Questionable Condition register will set the corresponding bit in the Questionable Event register on a zero to one state change.

The parameter is as follows:

number

The number representing the value of bits in the Questionable Positive Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Questionable Positive Transition register is shown in the following table.

Table 21-14. Questionable Positive Transition Register Bit Definitions

Bit	Weight	Condition
15	32768	X - don't care.
14	16384	X - don't care.
13	8192	X - don't care.
12	4096	X - don't care.
11	2048	X - don't care.
10	1024	X - don't care.
9	512	X - don't care.
8	256	0 = inhibit a zero to one state change of the "instrument calibration" bit from setting bit 8 in the Questionable Event register. 1 = enable a zero to one state change of the "instrument calibration" bit to set bit 8 in the Questionable Event register.
7	128	O = inhibit a zero to one state change of the "modulation circuitry calibration" bit from setting bit 7 in the Questionable Event register. 1 = enable a zero to one state change of the "modulation circuitry calibration" bit to set bit 7 in the Questionable Event register.
6	64	X - don't care.
5	32	0 = inhibit a zero to one state change of the "frequency circuitry lock" bit from setting bit 5 in the Questionable Event register. 1 = enable a zero to one state change of the "frequency circuitry lock" bit to set bit 5 in the Questionable Event register.
4	16	 0 = inhibit a zero to one state change of the "reference oven temperature" bit from setting bit 4 in the Questionable Event register. 1 = enable a zero to one state change of the "reference oven temperature" bit to set bit 4 in the Questionable Event register.

STATus: QUEStionable: PTRansition

Table 21-14. Questionable Positive Transition Register Bit Definitions (continued)

Bit	Weight	Condition
3	8	 0 = inhibit a zero to one state change of the "output power calibration" bit from setting bit 3 in the Questionable Event register. 1 = enable a zero to one state change of the "output power calibration" bit to set bit 3 in the Questionable Event register.
2	4	X - don't care.
1	2	X - don't care.
0	1	X - don't care.

Query Syntax

STATus: QUEStionable: PTRansition?

Returned format:

number<NL>

Where:

• *number* ::= The current value of the Questionable Positive Transition register.

See Also

STATus:QUEStionable:EVENt]? STATus:QUEStionable:CONDition? STATus:QUEStionable:ENABle STATus:QUEStionable:NTRansition

*STB? (Read Status Byte Query)

*STB?

The "*STB?" query returns the current value of the synthesizer status byte.

When you read the contents of the status byte, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the status byte using the "*STB?" query, the status byte is not cleared.

The decimal value of each bit (the bit weight) in the status byte is shown in the following table.

Bit Weight Name Condition 7 OPER 128 0 = no operation status events have occurred. 1 = an operation status event has occurred. 6 RQS/MSS 0 = instrument has no reason for service. 64 1 = instrument is requesting service. 5 32 ESB 0 = no event status conditions have occurred. 1 = an enabled event status condition has occurred. 16 MAV 0 = no output messages are ready. 1 = an output message is ready. 3 0 = no questionable conditions have occurred. 8 QUES 1 = a questionable condition has occurred. 2 Not used - always 0. 2 Not used - always 0. 1 0 1 Not used - always 0.

Table 21-15. Status Byte Bit Definitions

The MSS (Master Summary Status) bit and not RQS is reported on bit 6. The MSS indicates whether or not the device has at least one reason for requesting service. To read the status byte with RQS reported on bit 6, use the HP-IB serial poll.

At power-up, the status byte is momentarily cleared (set to 0). After being cleared, the status registers will report their bit values.

*STB? (Read Status Byte Query)

See Also

- *CLS *ESE
- *ESR? *SRE

3

Error Messages

Error Messages

If an error condition occurs in the synthesizer, it will always be reported to both the front panel and HP-IB error queues. These two queues are viewed and managed separately. The MSG key is used to view the contents of the front panel error queue. The HP-IB query "SYSTem:ERRor?" is used to view the contents of the HP-IB error queue.

If there are any error messages in the front panel error queue, the front panel MSG annunciator will be lit.

Pressing the MSG key repeatedly until the MSG annunciator turns off will empty the front panel error queue. The MSG key has no affect on the HP-IB error queue. Emptying the HP-IB error queue has no affect on the front panel queue, therefore, it will not affect the MSG annunciator.

There are some special error types that are called permanent errors. Permanent errors remain in the error queues until the error condition is cleared. Pressing the MSG key will empty the front panel error queue, but the permanent errors will be re-reported if the error conditions still exist. In the HP-IB error queue, the permanent errors are re-reported after the message, 0, "No error" is read using the "SYSTem:ERRor?" query or after the "*CLS" command is executed.

Error Messages List

The list of error messages in this chapter lists all of the error messages associated with synthesizer operation. An example of the error format found in the list of error messages is as follows:

2003 -222,"Data out of range; CW FREQ(2003)"

Select a CW frequency that is within range of the installed options. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

The following explains each element of an error message listing.

- Manual Error Number The number 2003 to the left and in the
 parenthesis is called the Manual Error Number. The error message list is
 organized in ascending order off the manual error number. The manual
 error number will always be found in the parenthesis contained in the
 message.
- Error Message The bold text -222, "Data out of range; CW FREQ(2003)" is the error message. When the MSG key is pressed, the error message is displayed in the left-most display. The entire message is returned by the HP-IB query "SYSTem: ERRor?." The error message contains the following parts:
 - SCPI Error Number The standard SCPI error number (-222 in the example) usually differs from the manual error number because the manual error number is unique for every possible message. Standard SCPI error numbers are always negative (except for 0, "No error"). If there is no standard SCPI error number for a message, the manual error number replaces it in the error message.
 - □ SCPI Error Message The SCPI error message is data out of range in the example.
 - □ Detailed Description All information after the semicolon is a detailed description of what exactly caused the error. In the example, CW FREQ tells you that CW frequency was out of range. If no detailed description exists, it will be omitted from the message.

Error Messages List

• Action Required — The text that appears below each error message listing contains corrective actions that should be followed in order to correct the error condition.

Notes

- 1. For more information related to error messages, refer to "To Read the Contents of the Error Queue" in Chapter 2 or the "MSG" reference entry in Chapter 6 of the HP 83731B/32B Synthesized Signal Generators User's Guide and HP 83731A/32A Synthesized Signal Generators User's Guide, and the "SYSTem:ERRor?" reference entry in Chapter 1 of this manual.
- Error messages related to hardware failures are listed in the HP 83731A/32A and HP 83731B/32B Synthesized Signal Generators Service Guide (HP part number 83731-90131).

The following pages list all error messages in ascending manual error number order

-440 -440, "Query UNTERMINATED after indefinite response; (-440)"

Correct the HP-IB controller program so that the query that returns indefinite length block data is the last item on the program line.

-430 -430, "Query DEADLOCKED; (-430)"

Correct the HP-IB controller program so that no more than eight queries are executed within the same line of the program.

-420 -420, "Query UNTERMINATED; (-420)"

Correct the HP-IB controller program so that the controller terminates commands with the newline character (NL) before the controller attempts to read query response data.

-410 -410, "Query INTERRUPTED; (-410)"

Check the HP-IB controller program to see if the controller is programmed to read the entire query response data before issuing a subsequent command.

-400 -400, "Query error; (-400)"

Some problem occurred while parsing an HP-IB query. Insure that your programming is correct and try the query again. Look at -440 through -400 for types of problems to look for.

-350 -350, "Queue overflow"

The error queue overflowed at this point and this message replaced the 16th error message. No action is required. Note: To clear the HP-IB error queue, use *CLS.

-330 -330, "Self-test failed; (-330)"

See the explanation for error number 4000.

-315 -315, "Configuration memory lost; (-315)" See error 1803.

-314 -314, "Save/recall memory lost; (-314)"

See error 1803.

-311 -311, "Memory error; (-311)"

See error 1803.

-310 -310, "System error; (-310)"

Some problem occurred while parsing an HP-IB command or query. Insure that your programming is correct and try the command again.

-300 -300, "Device specific error; (-300)"

A remote command or query could not be executed because an error occurred in the synthesizer.

-278 -278, "Macro header not found; (-278)"

A *GMC? or *RMC macro label could not be found in the list of defined macro labels. Use *LMC? to get a list of all the currently defined macro labels.

-277 -277, "Macro redefinition not allowed; (-277)"

Indicates that a macro label in the *DMC command could no be defined because the macro label was already defined.

-276 -276, "Macro recursion error; (-276)"

The nesting/recursion of macros is deeper than 4 levels. Don't use more than 4 levels when defining macros of macros.

-275 -275, "Macro definition too long; (-275)"

The macro definition must be 255 characters or less.

-274 -274, "Macro parameter error; (-274)"

A macro parameter placeholder was improperly used.

-273 -273, "Illegal macro label; (-273)"

Indicates that a macro label defined in the *DMC command has a legal string syntax; but, it is too long. It is the same as a common command header, or contain invalid header syntax.

-272 -272, "Macro execution error; (-272)"

Indicates that a syntactically legal macro program data sequence could not be executed due to some error in the macro definition.

-271 -271, "Macro syntax error; (-271)"

Indicates that a syntax error exists in the macro definition.

-270 -270, "Macro error; (-270)"

An error occurred while attempting to define, query or use a macro. Check that the macros are correct using *LMC? and *GMC?.

-261 -261," Math error in expression; (-261)"

An expression could not be evaluated due to a math error; for example, a divide-by-zero was attempted.

-260 -260, "Expression error; (-260)"

An expression could not be evaluated because it contains an error.

-241 -241, "Hardware missing; (-241)"

The requested hardware does not exist in the synthesizer. Use *OPT? to check which options are installed.

-240 -240, "Hardware error; (-240)"

The remote command or query could not be executed because of a hardware error.

-226 -226, "Tables not same length; (-226)"

See error 731.

-225 -225, "Out of memory; (-225)"

The synthesizer has run out of memory. The memory requested has not been allocated.

-224 -224, "Illegal parameter value; (-224)"

Correct the HP-IB controller program so that the data included with the HP-IB command is an acceptable parameter for the command.

-223 -223, "Too much data; (-223)"

Correct the HP-IB controller program so that there is less data on a single command line. The synthesizer does not have enough memory to buffer it all.

-222 -222, "Data out of range; (-222)"

The parameter data was out of range. Unlike other -222 errors, details are not known about the command or query which caused this error.

-221 -221, "Settings conflict; (-221)"

The current synthesizer state does not allow the remote command or query to be executed.

-220 -220, "Parameter error; (-220)"

The parameter included with the remote command or query is incorrect.

-213 -213, "Init ignored; (-213)"

Indicates that an initiate was ignored because a trigger was already in progress.

-212 -212, "Arm ignored; (-212)"

An arming signal was received and recognized but was ignored.

-211 -211, "Trigger ignored; (-211)"

A GET, *TRG or triggering signal was received and recognized but was ignored. Currently, there is no bus trigger capability in the synthesizer.

-210 -210, "Trigger error; (-210)"

A trigger error occurred in the synthesizer.

-201 -201, "Invalid while in local; (-201)"

The remote command or query cannot be executed when the synthesizer is in local mode.

-200 -200, "Execution error; (-200)"

Some problem occurred while executing an HP-IB command or query. Insure that your programming is correct and try the command again.

-184 -184, "Macro parameter error; (-184)"

Indicates that a command inside the macro definition had the wrong number or type of parameters.

-183 -183, "Invalid inside macro definition; (-183)"

Indicates that the program message sequence sent with *DMC or *DDT command, is syntactically invalid.

-181 -181, "Invalid outside macro definition; (-181)"

Indicates that a macro parameter placeholder was encountered outside of the macro definition.

-180 -180, "Macro error; (-180)"

An error occurred while attempting to define, query or use a macro. Check that the macros are correct using *LMC? and *GMC?.

-178 -178, "Expression data not allowed; (-178)"

Correct the HP-IB controller program so that the data included with the HP-IB command does not contain parentheses.

-171 -171, "Invalid expression; (-171)"

The expression contained a syntax error like unmatched parenthesis or an illegal character.

-170 -170, "Expression error; (-170)"

The expression contains a syntax error.

-168 -168, "Block data not allowed; (-168)"

Correct the HP-IB controller program so that the data included with the HP-IB command does not contain block data (no # character).

-161 -161, "Invalid block data; (-161)"

Correct the HP-IB controller program so that it contains a correct block data type. A block data type should begin with "#" followed by a number.

-160 -160, "Block data error; (-160)"

The block data contains a syntax error.

-158 -158, "String data not allowed; (-158)"

Correct the HP-IB controller program so that the data included with the HP-IB command does not contain string data (no single or double quote characters).

-151 -151, "Invalid string data; (-151)"

Correct the HP-IB controller program so that the string data included with the HP-IB command is terminated with a single or double quote. The terminating quote must be the same as the leading quote of the string. A string can also be valid if invalid characters are contained in it.

-150 -150, "String data error; (-150)"

The string data was too long to be buffered in the synthesizer string data area.

-148 -148, "Character data not allowed; (-148)"

Correct the HP-IB controller program so that the data included with the HP-IB command is not character data.

-144 -144, "Character data too long; (-144)"

The character data element contains more than 12 characters.

-141 -141, "Invalid character data; (-141)"

Either the character data element contains an invalid character or the particular element is not valid for the command or query.

-140 -140, "Character data error; (-140)"

The character data contains a syntax error.

-138 -138, "Suffix not allowed; (-138)"

Correct the HP-IB controller program so that the decimal data included with the HP-IB command does not use a suffix. Use exponential notation instead.

-134 -134, "Suffix too long; (-134)"

The suffix contained more than 12 characters.

-131 -131, "Invalid suffix; (-131)"

Correct the HP-IB controller program so that the decimal data included with the HP-IB command contains a valid suffix for that command or query.

-130 -130, "Suffix error; (-130)"

The suffix contains a syntax error.

-128 -128, "Numeric data not allowed; (-128)"

Correct the HP-IB controller program so that the data included with the HP-IB command is not numeric data.

-124 -124, "Too many digits; (-124)"

The mantissa of a decimal numeric data element contained more than 255 digits excluding leading zeros.

-123 -123, "Exponent too large; (-123)"

The magnitude of the exponent was larger than 32000.

-121 -121, "Invalid character in number; (-121)"

Correct the HP-IB controller program so that the decimal data or non-decimal numeric included with the HP-IB command contains the correct numeric characters.

-120 -120, "Numeric data error; (-120)"

An invalid numeric or non-decimal numeric was parsed but it was syntactically invalid.

-114 -114,"Header suffix out of range; (-114)"

Indicates that a header suffix was too large.

-113 -113, "Undefined header; (-113)"

The header is syntactically correct, but it is undefined for the synthesizer.

-112 -112, "Program mnemonic too long; (-112)"

The header contains more than 12 characters.

-111 -111, "Header separator error; (-111)"

An illegal header separator was encountered while parsing the header.

-110 -110, "Command header error; (-110)"

An error was detected in the header.

-109 -109, "Missing parameter; (-109)"

This error indicates that an HP-IB command or query has too few parameters. Correct the HP-IB controller program so that the HP-IB command or query contains the correct number of parameters.

-108 -108, "Parameter not allowed; (-108)"

This error indicates that an HP-IB command or query has too many parameters. Correct the HP-IB controller program so that the HP-IB command or query contains the correct number of parameters.

-105 -105, "GET not allowed; (-105)"

Correct the HP-IB controller program so that the group execute trigger does not occur within a line of HP-IB program code.

-104 -104,"Data type error;(-104)"

The parser recognized a data element different than one allowed. For example, numeric or string data was expected but block data was encountered.

-103 -103, "Invalid separator; (-103)"

A separator was expected but an illegal character was encountered. For example, the space is missing from the following: FREQ.01GHz.

-102 -102, "Syntax error; (-102)"

An unrecognized command or data type was encountered.

-101 -101, "Invalid character; (-101)"

A syntactic element contains a character which is invalid for that type. For example, a header containing an ampersand would give this error.

-100 -100, "Command error; (-100)"

Some problem occurred while parsing an HP-IB command or query. Insure that your programming is correct and try the command again.

0 0,"No error"

The error queue contains no errors.

110 110, "EEPROM unprotected; (110)"

The PG switch is set to 0 which leaves the EEPROM unprotected. Open up the synthesizer and switch the PG switch to 1. This error message is only a warning.

511 511, "YTO cal data init error; (511)"

The YIG oscillator factory calibration data checksum was incorrect. A new YIG calibration should be performed or else the instrument may be unable to attain lock at some frequencies.

600 600,"ALC loop went unleveled;(600)"

Power is set to a level that is higher than the instrument can supply. This is usually due to attenuator hold and the power is set to a value that requires the vernier to be operating out of its specified range. Change the power level or turn off attenuator hold. This is a "permanent" error.

601 601, "Hardware driver Power limit; (601)"

Due to instrument specials such as attenuator hold, the circuits cannot supply the specified power. Change the power level or turn off attenuator hold. This is a "permanent" error.

602 602, "Vernier has been set to the limit; (602)"

Due to instrument options such as attenuator hold, the circuits cannot supply the specified power. The vernier has been limited to a valid value. Change the power level or turn off attenuator hold. This is a "permanent" error.

603 603, "RF on/off command not valid; (603)"

An invalid request to turn off RF power was ignored by the instrument.

604 604, "Atten driver error while setting level; (604)"

The attenuators could not be set to the range requested. Change output power to a valid setting.

605 605, "Vernier driver error while setting level;(605)"

The vernier value requested was not possible. Change output power to a valid setting.

606 606, "Level is not in guaranteed range.; (606)"

The power level requested is beyond specifications and may be invalid. This could be due to a very low vernier setting required when attenuator hold is active. This is a "permanent" error.

608 608, "Attenuator not set before Ext Meter mode; (608)"

The attenuator range must match that of the meter range desired for external meter ALC mode. Turn off attenuator hold mode and make sure the power meter is in range hold before entering external power meter mode.

610 610, "Track and hold failed, level is invalid; (610)"

Power level was too high to do a power level setting in pulse or scan AM mode. Try setting power to a lower value.

611 611, "Track and hold failed, level is invalid; (611)"

Power level was too high to do a power level setting in pulse or scan AM mode. Try setting power to a lower value.

650 650, "PG switch not set to 0;(650)"

ALC calibration data was not saved in EEPROM because the PG switch was protecting the EEPROM from "writes." Open up the synthesizer and switch the PG switch to 0.

651 651, "Invalid vernier cal data for 1-20 GHz; (651)"

Valid vernier calibration data is not available for the 1-20 GHz band. If you need to use this frequency range, see the explanation for error number 4000.

652 652,"ALC term verification after EEPROM write;(652)"

ALC vernier calibration data was not written into EEPROM correctly. Try writing the data into the synthesizer again.

653 653, "Invalid vernier cal data for 0.01-1 GHz; (653)"

Valid vernier calibration data is not available for the 0.01-1 GHz band. If you need to use this frequency range, see the explanation for error number 4000.

655 655,"PG switch not set to 0;(655)"

Factory frequency correction data was not saved in EEPROM because the PG switch was protecting the EEPROM from "writes." Open up the synthesizer and switch the PG switch to 0.

656 656, "Factory flatness cal data verification; (656)"

Factory frequency level calibration data was not written into EEPROM correctly. Try writing the data into the synthesizer again.

657 657, "Factory flatness cal data is invalid; (657)"

A valid factory frequency level calibration is not available for one or more of the frequency bands and/or attenuator settings. See the explanation for error number 4000.

670 670, "Meter power input is out of range; (670)"

The ALC input is not a valid level. The power meter range may be wrong. This is a "permanent" error.

700 700, "Hardware driver Frequency limit; (700)"

The frequency entered cannot be generated by the synthesizer with the set of options available.

701 701, "Lo synthesizer set error; (701)"

The LO synthesizer cannot be set to the level requested. Enter a new frequency.

702 702, "Offset synthesizer set error; (702)"

The offset synthesizer cannot be set to the level requested. Enter a new frequency.

704 704,"YTO driver set error;(704)"

The YIG oscillator cannot be set to the level requested. Enter a new frequency.

706 706, "Low-pass filter set error; (706)"

The low-pass filter cannot be set to the requested setting. Enter a new frequency.

710 710, "LO synthesizer went out of lock; (710)"

The LO synthesizer went out of lock. This may be due to hookup or disconnection of an external time base. Enter a different RF frequency and then set the frequency back to the desired value to re-lock. This is a "permanent" error.

711 711, "Offset synthesizer went out of lock;(711)"

The offset synthesizer board was unable to attain lock. Enter a different RF frequency and then set the frequency back to the desired value to re-lock. This is a "permanent" error.

712 712, "Frequency loop went out of lock; (712)"

Enter a different RF frequency and then set the frequency back to the desired value to re-lock. This is a "permanent" error.

713 713, "Possible FM overmodulation; (713)"

Reduce the level of the modulating signal into the FM IN connector.

714 714, "Possible PM overmodulation (714)"

Reduce the level of the modulating signal into the FM/ ϕ IN connector.

730 730, "Invalid data in level correct table; (730)"

The active level correction table has no data in it. Select a level correction table with valid data, perform an automatic level correction to get valid data into the active table, or use HP-IB to load the active table. This is a "permanent" error.

731 –226, "Tables not same length; Level correct(731)"

The active level correction table has a mismatch between the number of frequencies stored and the number of losses stored. Select a level correction table with valid data, perform an automatic level correction to get valid data into the active table, or use HP-IB to load tables with the same length. This is a "permanent" error.

732 732, "Same frequencies with different losses; (732)"

The active level correction table has duplicate frequencies with different losses. Select a level correction table with valid data, perform an automatic level correction to get valid data into the active table, or use HP-IB to load tables with non-duplicate frequencies. This is a "permanent" error.

733 733, "Frequency table not in ascending order; (733)"

The MEM:TABL:FREQ command did not contain frequencies in ascending order. The whole MEM:TABL:FREQ command was rejected, leaving the old selected table unaltered.

734 734, "Frequency table not in ascending order; (734)"

The active level correction table does not contain frequencies in ascending order. Select a level correction table with valid data, perform an automatic level correction to get valid data into the active table, or use HP-IB to load a table with ascending ordered frequencies. This is a "permanent" error.

735 735, "Level correct points less than 2; (735)"

The number of points in a level correction table must be from 2 to 401. Either too few points were entered or duplicate frequencies caused the number of "real" points to shrink below 2.

736 736. "Factory level corr 1-20 GHz, 1-9 table; (736)"

Factory frequency level correction data for 1-20 GHz band, non-thru paths are not valid. If you need to use this frequency range and you are using a step attenuator, see the explanation for error number 4000.

737, "Factory level corr 0.01-1 GHz, 1-9 table; (737)"

Factory frequency level correction data for 0.01-1 GHz band, non-thru paths are not valid. If you need to use this frequency range and you are using a step attenuator, see the explanation for error number 4000.

738 738, "Factory level corr 0.01-1 GHz, 0dB table; (738)"

Factory frequency level correction data for 0.01-1 GHz band, thru path is not valid. If you need to use this frequency range and you work with output levels that don't use the step attenuator, see the explanation for error number 4000.

739 739, "Invalid data in table, not recalled; (739)"

This error indicates that a level correction table recall failed. Try selecting the same level correction table again. If this error message persists you will have to recreated the saved table.

740 740, "Another controller is on the HP-IB bus;(740)"

An automatic level correction was attempted but failed because there is a controller on the HP-IB bus. Remove all controllers from the HP-IB bus and try again.

741 741, "No HP-IB devices found; (741)"

An automatic level correction was attempted but failed to find any other devices on the HP-IB bus. Connect the desired power meter to the HP-IB bus and try again. Check the HP-IB cable(s) for loose connections.

742 742, "Errors in cleanup of HP-IB; (742)"

When exiting the automatic level correction, the synthesizer failed to finish resetting the HP-IB bus and presetting the power meter. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

743 743, "No HP-IB devices found; (743)"

An automatic level correction was attempted but failed to find any other devices on the HP-IB bus. Connect the desired power meter to the HP-IB bus and try again. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

744 744,"Cannot find power meter on HP-IB bus;(744)"

An automatic level correction was attempted but failed to find a power meter on the HP-IB bus. Connect the desired power meter to the HP-IB bus and try again. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

745 745,"Meter returns error msg +9.0000E+40;(745)"

While running the automatic level correction, the power meter returned +9.0000E+40 as the power reading. This number indicates an error within the power meter.

746 746, "Data measured is invalid or out of range; (746)"

While running the automatic level correction, the power meter returned an out of range power reading or the power meter returned a non-number as its power reading. Check that the power meter is reading an appropriate value by looking at it.

747 747, "Unable to receive msg from meter; (747)"

An automatic level correction was attempted but failed to power readings back from the power meter. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

748 748, "Erasing corrupted level correct table; (748)"

A level correction table was corrupt and was erased to fix it.

749 749, "Frequency not within level correct data; (749)"

This message is a warning that the current CW frequency is not contained within the frequencies in the active level correction table. Therefore, the correction applied to the output will be 0 dB. This is a "permanent" error.

751 751,"Parameters cause points to be too large;(751)"

The level correction parameters cannot define a new table because they create too many level correction points.

752 -222,"Data out of range;Data set to minimum(752)"

Loss data must be in the range of -40 to +40 dB.

753 –222,"Data out of range;Data set to maximum(753)" Loss data must be in the range of -40 to +40 dB.

754 754, "Total points reduced from that requested; (754)"

The number of points requested for an automatic level correction has been reduced to avoid duplicate frequencies.

755 755, "Invalid data in active table, not saved; (755)"

This error indicates that a level correction table save failed. Try selecting the same level correction table again. If this error message persists you will have to recreated the table.

756 756, "Factory level corr 1-20 GHz, 0dB table; (756)"

Factory frequency level correction data for 1-20 GHz band, thru path is not valid. If you need to use this frequency range and you work with output levels that don't use the step attenuator, see the explanation for error number 4000.

757 757, "Bad attenuator setting parameter; (757)"

The attenuator range for looking up factory frequency level correction data, is 0 through 120 (resolution is 10).

758 -222, "Data out of range; Data set to minimum (758)"

Loss data for factory frequency level correction was less than minimum.

759 –222,"Data out of range;Data set to maximum(759)"

Loss data for factory frequency level correction was more than maximum.

760 760, "Bad index into data table; (760)"

A data lookup from a calibration table found that the index data is out of range. Try setting the same synthesizer function again. If this error message persists, run the instrument self-test.

761 761, "Bad index into offset table; (761)"

A data lookup from the factory level correction offset table found that the index data is out of range. Try setting the same synthesizer function again. If this error message persists, run the instrument self-test.

763 763, "Unable to write to EEPROM; (763)"

A calibration table was not loaded into EEPROM because the EEPROM was protected or the EEPROM load did not verify. Open up the synthesizer and switch the PG switch to 0.

764 764, "Unable to write to RAM; (764)"

A write to RAM failed to verify. Run the self-test routine to check RAM for problems.

765 765, "Attempt to write to ROM; (765)"

There was an attempt to write calibration data to ROM. This should not occur, but if it does, try setting the same synthesizer function again. If this error message persists, run the instrument self-test.

766 766, "Number of writes to EEPROM exceeds max; (766)"

The number of EEPROM writes has exceeded the maximum allowed. However, the data was written to the EEPROM anyway. This is only a warning; but, you should check to make sure your data was correctly stored in EEPROM.

770 770," YTO cal data invalid; (770)"

The YIG oscillator factory calibration data checksum was incorrect. Select the CAL YIG OSC feature to perform a YIG oscillator calibration. If you do not re-calibrate, the synthesizer may be unable to attain lock at some frequencies.

771 771, "Invalid YIG DAC value in cal table.;(771)"

The YIG oscillator factory calibration data checksum was incorrect. Select the CAL YIG OSC feature to perform a YIG oscillator calibration. If you do not re-calibrate, the synthesizer may be unable to attain lock at some frequencies.

772 772, "YTO cal values for Up/Down search vary; (772)"

The YIG oscillator factory calibration data checksum was incorrect. Select the CAL YIG OSC feature to perform a YIG oscillator calibration. If you do not re-calibrate, the synthesizer may be unable to attain lock at some frequencies.

774 774, "EEPROM protected, YTO cal aborted; (774)"

An automatic YIG oscillator calibration was not performed because the PG switch was protecting the EEPROM from "writes." Open up the synthesizer and switch the PG switch to 0.

775 775, "Low band yto cal failed: (775)"

The low band calibration failed and the data for the calibration was not saved. Re-try the YIG calibration and watch for the default cal points indicated when the DAC value shown for a given point says 'dflt =' instead of 'DAC = '.

776 776, "High band yto cal failed; (776)"

The low band calibration failed and the data for the calibration was not saved. Re-try the YIG calibration and watch for the default cal points indicated when the DAC value shown for a given point says 'dflt =' instead of 'DAC ='.

777 777,"Low band yto cal could not write EEPROM;(777)"

The data for the low band YIG calibration could not be written to EEPROM. Make sure the PG switch on the processor board was closed during the cal and re-try the YIG calibration.

778 778, "High band yto cal could not write EEPROM;(778)"

The data for the low band YIG calibration could not be written to EEPROM. Make sure the PG switch on the processor board was closed during the cal and re-try the calibration.

779 779, "Only 2 GHz or 10 GHz allowed for YTO Cal;(779)"

The start frequency specified for the CAL:YIG:FREQ:START command was not valid. Re-enter the start frequency and start the YIG calibration again.

785, "Cal Data not saved, PG switch is not 0;(785)"

The calibration data could not be saved because the PG switch on the microprocessor board was not closed. Close the PG switch and do the calibration again.

786 786, "Cal Data verification after EEPROM write; (786)"

The calibration data was not written correctly after the calibration. Close the PG switch and do the calibration again.

787 787, "FM cal and Pinchoff cal not initialized; (787)"

The YIG calibration has not been done for both YIG bands or else the pinch-off cal values have not been entered yet.

790 790, "Scan-mod 0.01-1 GHz gain tables bad; (790)"

Checksum was invalid for the AM gain tables. If you need to use this frequency range and scan AM modulation, see the explanation for error number 4000.

793 793, "Scan AM cal not valid, defaults used; (793)"

Scan AM level may be in error due to invalid calibration data. If you need to use scan AM modulation, see the explanation for error number 4000.

794 794, "Scan-mod 1-20 GHz gain tables bad; (794)"

Checksum was invalid for the AM scan gain tables. If you need to use this frequency range and scan AM modulation, see the explanation for error number 4000.

795 795, "Scan-mod 1-20 GHz linear 1 tables bad; (795)"

Checksum was invalid for the AM scan linear 1 tables. If you need to use this frequency range and scan AM modulation, see the explanation for error number 4000.

796 796, "Scan-mod 1-20 GHz linear 2 tables bad; (796)"

Checksum was invalid for the AM scan linear 2 tables. If you need to use this frequency range and scan AM modulation, see the explanation for error number 4000.

800 800, "Options not saved, PG switch is not 0;(800)"

The instrument option bit-fields were not saved to EEPROM. Open up the synthesizer, switch the PG switch to 0, and try setting the option bit-fields again.

801 801, "Serial num not saved, PG switch is not 0;(801)"

The instrument serial number was not saved to EEPROM. Open up the synthesizer, switch the PG switch to 0, and try setting the serial number again.

802 802, "Assembly Revs not saved, PG switch is not 0 (802)"

The protection switch on the CPU board is in an incorrect position to change EEPROM data.

803 803, "EEPROM not cleared, PG switch is not 0 (803)"

The protection switch on the CPU board is in an incorrect position to clear EEPROM data.

900 900, "PRI increased to fit pulse width; (900)"

The current pulse width is too large for the current PRI. The PRI is increased to allow for the pulse width. This is a "permanent" error.

901 901,"Delay and width decreased to fit max PRI;(901)"

The current pulse width plus the current pulse delay is too large because they are greater than the maximum PRI. The delay and/or the width were reduced to fit. This is a "permanent" error.

940 940, "Oven is cold; (940)"

The high stability time base oven is cold. The oven must be allowed to warm up before proper instrument operation will occur. This is a "permanent" error.

944 944, "Reference synthesizer went out of lock; (944)"

The reference synthesizer went out of lock. The out of lock condition may have been due to an external time base being connected or disconnected. Enter a different RF frequency and then set the frequency back to the desired value to re-lock. This is a "permanent" error.

1101 1101, "Loop number is invalid.;(1101)"

If you are using the direct hardware control service feature, you have entered an out of range value. If this error occurs while not using the direct hardware control service feature, low level hardware drivers could not set the requested synthesizer setting. Try setting the synthesizer again. If this error message persists, run the instrument self-test.

1102 1102, "Start bit is negative.; (1102)"

See the explanation for error number 1101.

1103 1103, "Length less than 0 or more than 32;(1103)"

See the explanation for error number 1101.

- 1104 1104, "Start bit is invalid for given loop.;(1104)"
 See the explanation for error number 1101.
- 1105 1105, "Length is invalid for given loop;(1105)"

 See the explanation for error number 1101.
- 1106 1106, "Data is too large for given length; (1106)"

 See the explanation for error number 1101.
- 1107 -222,"Data out of range;Bit field number(1107)"

 See the explanation for error number 1101.
- 1108 -222,"Data out of range;Query port field(1108)"

If you are using the direct hardware control service feature, you have entered an out of range query address. If this error occurs while not using the direct hardware control service feature, low level hardware drivers could not complete a query. Try setting the synthesizer again. If this error message persists, run the instrument self-test.

- 1109 1109, "Query Port mode; (1109)"

 See the explanation for error number 1108.
- 1462 1462, "Keybd processor reports status error; (1462)"

 A key press was not successful. Try pressing the same key again. If the error message persists, see the explanation for error number 4000.
- 1463 1463, "Keybd processor data lines incorrect; (1463)"

 A key press was not successful. Try pressing the same key again. If the error message persists, see the explanation for error number 4000.
- 1501 -302, "8673 command not recognized (1501)"

 While in HP 8673 emulation mode, an incoming command string was not recognized as being valid. Refer to the front-panel error que for the command sequence.
- 1511 -301,"8673 command K0 not emulated (1511)"

1512 -301,"8673 command K1 not emulated (1512)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1513 -301, "8673 command Mn not emulated (1513)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1514 -301, "8673 command Xn not emulated (1514)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1515 -301, "8673 command Wn not emulated (1515)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1516 -301, "8673 command BS not emulated (1516)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1517 -301, "8673 command L2 not emulated (1517)"

1518 -301, "8673 command _9 not emulated (1518)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1519 -301,"8673 command OC not emulated (1519)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1520 -301,"8673 command CT not emulated (1520)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1521 -301, "8673 command Nx not emulated (1521)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1522 -301,"8673 command SU not emulated (1522)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1523 -301, "8673 command SD not emulated (1523)"

1524 -301, "8673 command Tx not emulated (1524)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1525 -301, "8673 command TR not emulated (1525)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1526 -301, "8673 command RS not emulated (1526)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1527 -301,"8673 command SM not emulated (1527)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1528 -301, "8673 command_2 not emulated (1528)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1529 -301, "8673 command_3 not emulated (1529)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1530 -301, "8673 command_A not emulated (1530)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus

discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1531 -301, "8673 command SV not emulated (1531)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1532 -301, "8673 command OL not emulated (1532)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1534 -301,"8673 command FA not emulated (1534)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1535 -301,"8673 command FB not emulated (1535)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1536 -301, "8673 command FS not emulated (1536)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1537 -301,"8673 command DF not emulated (1537)"

1538 -301, "8673 command DW not emulated (1538)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1539 -301, "8673 command SF not emulated (1539)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1540 -301, "8673 command SP not emulated (1540)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1541 -301, "8673 command IF not emulated (1541)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1802 1802, "Low Battery Voltage; (1802)"

The synthesizer battery voltage is low. This could cause loss of RAM data if synthesizer power is turned off. Note: Calibration data will never be lost.

1803 1803, "RAM data lost at power on; (1803)"

All RAM data was lost. This includes all front panel settings, save/recall registers, level corrections, and other user settable values. This error message can occur when the battery voltage is low, or options change in the synthesizer. Note: Calibration data will never be lost.

1804 1804, "Self-test failure, run the self-test;(1804)"

The power-on self-test detected an error or warning. See the explanation for error number 4000.

1805 1805, "Processor Board or IBUS test Failure; (1805)"

The power-on self-test detected an error or warning for the microprocessor board circuits or power supply monitors. See the explanation for error number 4000.

1806 1806, "ROM checksum test failure; (1806)"

The synthesizer ROM check sum does not match the data in ROM. See the explanation for error number 4000.

- 1820 -221, "Settings conflict; PM DEV (1820)"
 - 1. The PM internal deviation setting was reduced because either:
 - a. FreqCw was changed into the low band region, or
 - b. PM internal rate was set above 30 kHz and the PM deviation was above 4 rads.
- 1821 –221, "Settings conflict; INT PM FREQ (1821)"

The PM internal deviation setting was decreased because the PM deviation was increased above 4 rads while the PM internal rate was above 30 kHz.

1822 –221, "Settings conflict; INT FM DEV (1822)"

The FM internal deviation setting was reduced because the FreqCw was changed into a lower divided low band region.

2003 -222,"Data out of range; CW FREQ(2003)"

Select a CW frequency that is within range of the installed options. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

2006 -222,"Data out of range;POWER LEVEL(2006)"

Select a power level within the following ranges: No attenuator options, -15 dBm to +30 dBm. Option 1E1, -100 dBm to +30 dBm.

2012 -224,"Illegal parameter value; ALC SOURCE(2012)"

The requested ALC source is not available in the synthesizer. Use *OPT? to check which options are installed.

- 2015 –222,"Data out of range;SPECIAL(2015)"

 Select a special function number that is available in the synthesizer.
- 2018 –222, "Data out of range; FREQ MULTIPLIER INCR(2018)"

 Select a frequency multiplier increment from 1 to 99.
- 2021 -224, "Illegal parameter value; PULSE PROT STAT (2021)"
 This command requires a boolean argument.
- 2024 -222,"Data out of range;CW FREQ INCR(2024)"

Select a CW frequency increment from 1 kHz to 19.99 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also. If the Option 1E8 is installed the limits will also change to allow for 1 Hertz resolution.

- 2030 –222,"Data out of range;DIRECT HW CONTROL(2030)"

 Select synthesizer direct hardware control values within range. See the service manual for more details on this feature.
- 2033 -222,"Data out of range;POWER LEVEL INCR(2033)"

 Select a power level within the following ranges:

 No attenuator options, 0.01 dBm to +45 dBm. Option 1E1, 0.01 dBm to +130 dBm.
- 2036 -222,"Data out of range;EXT METER LEVEL(2036)"

 Select an external power meter reading within the following ranges:

 No attenuator options, -15 dBm to +30 dBm. Option 1E1, -100 dBm to +30 dBm.
- 2042 -222, "Data out of range; DIAG:IBUS:DIR(2042)"

 Correct the HP-IB command DIAG:IBUS:DIR or DIAG:IBUS:DIR? so that its parameters are within their appropriate ranges. See the service manual for more details on this HP-IB only feature.
- 2045 -224, "Illegal parameter value; *EMC (2045)"

 This command requires a 1 or 0 as an argument.

2048 -222,"Data out of range;SYST:KEY(2048)"

Select a key code available on the synthesizer's front panel.

2051 -161, "Invalid block data; SYST: SET bad size(2051)"

The "learn string" sent to the synthesizer is corrupt (incorrect number of bytes). Check that the HP-IB controller is sending the string correctly. In addition, insure that the controller loaded the learn string correctly in the first place. Note: The *LRN? query always returns the same length string regardless of the state of the synthesizer; but, the *LRN? response can change if the firmware version changes.

2054 -222,"Data out of range;CAL:ALC:CURV(2054)"

Correct the HP-IB command CAL:ALC:CURV so that its parameters are within the following ranges:

1st parameter: 0.0 to 4.0 2nd parameter: -2.0 to 2.0 3rd-6th parameter: -1.0 to 1.0 7th parameter: 0.0 to 25.0

2057 -222,"Data out of range;HPIB ADDRESS(2057)"

Select an HP-IB address for the synthesizer from 0 to 30.

2060 -222,"Data out of range;SAVE(2060)"

Select a save state register number from 0 to 9.

2066 -222, "Data out of range; RECALL(2066)"

Select a recall state register number from 0 to 9.

2075 -222, "Data out of range; LO FREQ(2075)"

Select an LO frequency from 300 MHz to 359.5 MHz.

2078 -222, "Data out of range; OFFSET FREQ(2078)"

Select an offset frequency from 5 MHz to 40 MHz.

2081 -222,"Data out of range;DIAG:FREQ:CYCL(2081)"

Correct the HP-IB command DIAG:FREQ:CYCL so that its parameters are within range. See the service manual for more details on this feature.

2087 -222,"Data out of range; YIG OSC CAL FREQ(2087)"

Correct the HP-IB command CAL: YIG: FREQ: STARt so that its parameter is 2 GHz or 10 GHz.

2090 -222,"Data out of range;CAL:YIG(2090)"

Correct the HP-IB command CAL:YIG[:DATA] so that all of its parameters are from 0 to 65535.

2093 –224,"Illegal parameter value; AM STATE (2093)"
This command requires a boolean argument.

2096 -224,"Illegal parameter value; PULSE TRIG SOUR(2096)"

The requested pulse trigger source is not available in the synthesizer.
Use *OPT? to check which options are installed.

2099 –222,"Data out of range;FREQ MULTIPLIER(2099)"

Select a frequency multiplier from 1 to 100.

2102 -222,"Data out of range;EXT METER INCR(2102)"

Select an external power meter reading increment within the following ranges:

No attenuator options, 0.01 dBm to +45 dBm. Option 1E1, 0.01 dBm to +130 dBm.

2105 -222, "Data out of range; CAL: ALC: CURV: FREQ(2105)"

Correct the HP-IB command CAL:ALC:CURVe:FREQuency:STARt so that its parameter is from 10 MHz to 40 GHz. See the service manual for more details on this feature.

2111 -224, "Illegal parameter value; *PSC (2111)"

This command requires a 1 or 0 as an argument.

2114 -224,"Illegal parameter value; ATTEN LOCK(2114)"

The HP-IB command "POWer: ATTenuation: AUTO OFF" can only be used if the Option 1E1 is installed.

2123 -222,"Data out of range;PULSE WIDTH(2123)"
Select a pulse width from 0 to 419 ms.

- 2126 -222, "Data out of range; PULSE PRI/PRF(2126)"
 - Select a pulse repetition interval from 419 ms to a minimum depending on the current carrier frequency or select a pulse repetition frequency from 2.5 Hz to a maximum depending on the current carrier frequency.
- 2132 -224,"Illegal parameter value; PULSE STATE (2132)"
 This command requires a boolean argument.
- 2135 -224,"Illegal parameter value; EXT PULSE INV(2135)"

 The requested external pulse polarity is not available in the synthesizer. Use *OPT? to check which options are installed.
- 2138 –224, "Illegal parameter value; PULSE SOURCE(2138)"

 If the internal pulse source is not installed in the synthesizer, the HP-IB command PULM: SOURce only allows EXTernal as a parameter.
- 2144 -222,"Data out of range;PULSE DELAY(2144)"

 Select a pulse delay from -419 ms to 419 ms. The minimum delay is 0 if external trigger pulse mode is being used.
- 2147 -224, "Illegal parameter value; FM STATE (2147)"

 This command requires a boolean argument.
- 2159 –224, "Illegal parameter value; AM TYPE(2159)"

 Expected argument is either EXPonential or LINear.
- 2162 -222,"Data out of range;CAL:AM:GAIN:OFFS (2162)" The value must remain between -128 and +127.
- 2165 –224,"Illegal parameter value;REMOTE LANGUAGE(2165)"

 Select an HP-IB remote language which is available in the synthesizer.
 "SCPI" is the default but others are available as options.
- 2168 -222,"Data out of range;PULSE DELAY INCR(2168)"
 Select a pulse delay increment from 25 ns to 838 ms.
- 2171 -222,"Data out of range;PULSE WIDTH INCR(2171)"
 Select a pulse width increment from 25 ns to 419 ms.

2174 -222,"Data out of range;PULSE PRI/PRF INCR(2174)"

Select a pulse repetition interval increment from 25 ns to 419 ms or select a pulse repetition frequency increment from 1 MHz to 3.3 MHz.

- 2177 –222,"Data out of range;CAL:FLAT(2177)"

 Loss data for factory frequency level correction was out of range.
- 2180 –224, "Illegal parameter value; FM AC DC(2180)"
 Allowable parameter values are AC or DC only.
- 2189 -224,"Illegal parameter value;DISPLAY STATE(2189)"

 The display state could not be set to the state requested.
- 2192 -224,"Illegal parameter value; LEV CORR STATE (2192)"
 This command requires a boolean argument.
- 2198 –224,"Illegal parameter value; EXT REF(2198)"

 The reference oscillator could not be set to INTernal because an internal oscillator does not exist or the reference oscillator could not be set to EXTernal because an external oscillator does not exist.
- 2210 –222,"Data out of range; ASSembly REVision (2210)"

 The value must remain between 0 and +254.
- 2216 -222,"Data out of range; NODE MEASURE(2216)"

 Select a meter node number within range. See the service manual for more details on this feature.
- 2219 -222,"Data out of range;OPTION WRITE(2219)"

 Select an option bit-field number within range. See the service manual for more details on this feature.
- 2225 -222,"Data out of range;FM SENSITIVITY(2225)"

 Select an FM sensitivity within its range for the current CW frequency and multiplier.
- 2231 -224,"Illegal parameter value; PULSE RISE TIME(2231)"

 The requested pulse rise time is not available in the synthesizer. Use *OPT? to check which options are installed.

2237 -222,"Data out of range;OFFSET FREQ INCR(2237)"

Select an offset frequency increment from 1 kHz to 35 MHz. If the Option 1E8 is installed the lower limit will change to 1 Hz to allow for 1 Hertz resolution.

- 2240 -222,"Data out of range;LO FREQ INCR(2240)"

 Select an LO frequency increment from 1 kHz to 359.5 MHz.
- 2243 –222,"Data out of range;DIRECT HW CONTROL INC(2243)"

 Select synthesizer direct hardware control increment values within range. See the service manual for more details on this feature.
- 2249 –222,"Data out of range;DIAG:ABUS?(2249)"

 Correct the HP-IB query DIAG:ABUS? so that its parameter is within their appropriate range. See the service manual for more details on this HP-IB only feature.
- 2252 -222,"Data out of range;CAL:AM:LIN(2252)"

 Correct the HP-IB command CAL:AM:LINear[:DATA] so that all of its parameters are from 0 to 255.
- 2255 –222, "Data out of range; CAL:AM:LIN:TABL(2255)"

 Correct the HP-IB command CAL:AM:LINear:TABLe so that its parameter is 1 or 2.
- 2264 –222,"Data out of range;CAL:YIG:FM:SENS(2264)"

 Correct the HP-IB command CAL:YIG:FM:SENSitivity so that all of its parameters are from -80 to 80.
- 2276 -222,"Data out of range;CORR:FLAT(2276)"

Correct the HP-IB command CORRection:FLATness[:DATA] so that all of its frequency parameters are from 1 GHz to 20 GHz and all of its loss parameters are from -40 dB to +40 dB. If other modules or options are installed that extend the frequency range of the synthesizer, this frequency range will be extended also.

2277 2277, "CORR:FLAT cannot query empty table;(2277)"

The selected level correction table data cannot be queried because it is invalid or it does not exist. Check that MEMory:TABLe:SELect is set to a level correction table that has data.

Messages

2291 –224, "Illegal parameter value; SERIAL NUM(2291)"

Correct the HP-IB command SYSTem: SNUMber so that its string parameter is 10 characters or less.

2292 -151, "Invalid string data; SERIAL NUM bad char(2292)"

A serial number can only contain characters from ASCII 32 (space) through ASCII 126 (~). However, ASCII 44 (,) and ASCII 59 (;) cannot be used.

2294 -222,"Data out of range; POW METER ADDRESS(2294)"

Select a power meter address for automatic level correction from 0 to 30. Secondary addresses may be allowed in future firmware revisions.

2300 -222, "Data out of range; CAL:FLAT:FREQ:START(2300)"

Correct the HP-IB command CAL:FLATness:FREQuency:STARt so that its parameter is from 10 MHz to 40 GHz. See the service manual for more details on this feature.

2303 -222,"Data out of range;CAL:FLAT:ATT(2303)"

Correct the HP-IB command CAL:FLATness:ATTenuation so that its parameter is from 0 dB to 120 dB with a resolution of 10 dB. See the service manual for more details on this feature.

2306 -222,"Data out of range;CAL:AM(2306)"

Correct the HP-IB command CAL:AM[:DATA] so that all of its parameters are from 0 to 255.

2309 -222, "Data out of range; CAL: AM: FREQ: START(2309)"

Correct the HP-IB command CAL:AM:FREQuency:STARt so that its parameter is from 10 MHz to 40 GHz. See the service manual for more details on this feature.

2444 -222,"Data out of range; LEVEL CORR START FREQ(2444)"

Select an automatic level correction start frequency from 1 GHz to 20 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

2447 -222,"Data out of range;LEVEL CORR STOP FREQ(2447)"

Select an automatic level correction start frequency from 1 GHz to 20 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

2453 -222,"Data out of range; AM SENSitivity (2453)"

Sensitivity of 30%/Volt or 100%/Volt is allowed in linear mode; -10dB/volt is allowed in log mode.

2457 2457, "RF on before running level correct; (2457)"

The RF must be turned on before running an automatic level correction. Turn RF on and try running the automatic level correction again.

2462 -222,"Data out of range; LEVEL CORR START INC(2462)"

Select an automatic level correction start frequency increment from 1 kHz to 19.99 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also. If the Option 1E8 is installed the limits will also change to allow for 1 Hertz resolution.

2465 -222,"Data out of range; LEVEL CORR STOP INC(2465)"

Select an automatic level correction stop frequency increment from 1 kHz to 19.99 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also. If the Option 1E8 is installed the limits will also change to allow for 1 Hertz resolution.

- 2471 –222, "Data out of range; HPIB ADDRESS INCR(2471)" Select an HP-IB address increment from 1 to 29.
- 2474 -222,"Data out of range; YIG OSC CAL FREQ INC(2474)"

 Correct the HP-IB command CAL: YIG: FREQuency: STARt: STEP so that its parameter is from 1 GHz to 10 GHz.
- 2477 -222, "Data out of range; CAL: PULSe: PINCh(2477)"

 Correct the HP-IB command CAL: PULSe: PINCh[:DATA] so that all of its parameters are from 0 to 255.

Messages

- 2480 -222, "Data out of range; CAL: PULS: FREQ: START(2480)"

 Correct the HP-IB command CAL: PULSe: FREQuency: STARt so that its parameter is 10 MHz.
- 2522 -222,"Data out of range; POW METER ADDRESS INC(2522)"
 Select a power meter address increment from 1 to 29.
- 2525 -222,"Data out of range; NODE MEASURE INC(2525)"
 Select a meter node increment within range.
- 2531 -222,"Data out of range; LEVEL CORR POINTS(2531)"

 Select automatic level correction number of points from 2 to 401.
- 2534 -222,"Data out of range;LEVEL CORR POINTS INC(2534)"

 Select automatic level correction number of points increment from 1 to 401.
- 2537 -222,"Data out of range;LEVEL CORRECT SAVE(2537)"
 Select an automatic level correction register from 1 to 4.
- 2540 -222,"Data out of range;LEVEL CORR SELECT(2540)"

 Select an automatic level correction register from 1 to 4.
- 2564 –222,"Data out of range; PM:COUP (2564)"

 This command requires a boolean argument.
- 2567 –224,"Illegal parameter value; PULSE RISE TIME(2567)"

 The requested pulse rise time is not available in the synthesizer. Use *OPT? to check which options are installed.
- 2570 -224,"Illegal parameter value; POWERMETER TYPE(2570)"

 The selected power type is not supported by the synthesizer.
- 2576 –224,"Illegal parameter value; PULSE STOP SOUR(2576)"

 The requested pulse trigger stop source is not available in the synthesizer. Use *OPT? to check which options are installed.
- 2579 -224,"Illegal parameter value;TRIG:STOP:SLOP(2579)"

 The requested pulse trigger stop slope is not available in the synthesizer. Use *OPT? to check which options are installed.

2582 -222,"Data out of range; PM DEV (2582)"

The internal modulation setting for phase modulation is beyond instrument capabilities. An absolute upper limit of 200 rads is maintained for frequencies above 2 GHz. At lower frequencies, the upper limit is reduced.

2588 –224,"Illegal parameter value;MEM:TABL:SEL(2588)"

2591 -222, "Data out of range; MEM: TABL: FREQ(2591)"

Select an automatic level correction register from 1 to 4.

Correct the HP-IB command MEMory: TABLe: FREQuency so that all of its parameters are from 1 GHz to 20 GHz. If other modules or options are installed that extend the frequency range of the synthesizer, this frequency range will be extended also.

2592 2592, "MEM:TABL:FREQ cannot query empty table;(2592)"

The selected level correction table data cannot be queried because it is invalid or it does not exist. Check that MEMory:TABLe:SELect is set to a level correction table that has data.

2597 -222,"Data out of range; MEM: TABL: LOSS(2597)"

Correct the HP-IB command MEMory:TABLe:LOSS[:MAGnitude] so that all of its parameters are from $-40~\mathrm{dB}$ to $+40~\mathrm{dB}$.

2598 2598, "MEM:TABL:LOSS cannot query empty table; (2598)"

The selected level correction table data cannot be queried because it is invalid or it does not exist. Check that MEMory:TABLe:SELect is set to a level correction table that has data.

2612 –224,"Illegal parameter value; FM SOURCE(2612)"

The allowable arguments are EXTernal, FEED, or INTernal. FEED and INTernal are only allowed when Option 1E2 (internal modulation) is installed.

2615 -222,"Data out of range;INT FM FREQ(2615)"

Select an internal FM frequency (rate) from 0.5 Hz to 1 MHz.

2618 -222,"Data out of range;INT FM FREQ INC(2618)"

Select an internal FM frequency (rate) increment from $0.5~\mathrm{Hz}$ to $999.9995~\mathrm{kHz}$.

Messages

- 2621 -222,"Data out of range;INT FM DEV(2621)"

 Select an internal FM deviation from 0 Hz to 10 MHz.
- 2624 -222,"Data out of range;INT FM DEV INC(2624)"

 Select an internal FM deviation increment from 0.01Hz to 10 MHz.
- 2627 –224,"Illegal parameter value; FM: FEED (2657)"

 Change the FM: FEED input parameter to a source that is available in the synthesizer.
- 2633 -224,"Illegal parameter value; PM STATE (2633)"

 This command requires a boolean argument, or phase modulation is not possible on this instrument, or the phase modulation option is not installed.
- 2636 –224, "Illegal parameter value; PM SOURCE (2636)"

 The allowable arguments are EXTernal, FEED, or INTernal. FEED and INTernal are only allowed when the Option 1E2 (internal modulation) is installed.
- 2639 –222, "Data out of range; FM SENS (2639)"

 The requested sensitivity exceeds the capabilities of the instrument at the current FREQuencyCW. The limitation of FmSens are dependent upon FREQuencyCW.
- 2642 -224, "Illegal parameter value; AM SOURCE(2642)"

 The allowable arguments are EXTernal, FEED, or INTernal. FEED and INTernal are only allowed when Option 1E2 (internal modulation) is installed.
- 2645 -222,"Data out of range;INT AM FREQ(2645)"

 Select an internal AM frequency (rate) from 0.5 Hz to 20 kHz.
- 2648 -222,"Data out of range;INT AM FREQ INC(2648)"

 Select an internal AM frequency (rate) increment from 0.5 Hz to 20 kHz.
- 2651 -222,"Data out of range;INT AM DEPTH(2651)"

 In log mode, the data value must be between 0 dB and 60 dB. In linear mode, the data value must be between 0% and 100%.

- 2654 -222,"Data out of range;INT AM DEPTH INC(2654)"
 - In log mode, the data value must be between .01 dB and 60 dB. In linear mode, the data value must be between 0.1% and 100%.
- 2657 –224,"Illegal parameter value; AM:FEED(2657)"

 Change the AM:FEED input parameter to a source that is available in the synthesizer.
- 2660 -222,"Data out of range; INT PM DEV INC (2660)"

 The value must remain between .01 rads and 10.0 rads.
- 2663 -222,"Data out of range; INT PM FREQ (2663)"

 The value must remain between 0.5 Hz and 1 MHz, except when PM:RANG:AUTO is set to HIGH. In this case, the value will be restricted to a value between 0.5 Hz and 30 kHz.
- 2666 -222,"Data out of range; INT PM FREQ INC (2666)"

 The value must remain between 0.5 Hz and 999.9995 kHz.
- 2672 -222,"Data out of range; CAL:MODS:AM(2672)"

 Correct the HP-IB command CAL:MODS:AM[:DATA] so that all of its parameters are from 0 to 255.
- 2678 -222,"Data out of range;CAL:MODS:FM(2678)"

 Correct the HP-IB command CAL:MODS:FM[:DATA] so that all of its parameters are from 0 to 255.
- 2702 -222,"Data out of range; ADD OPTION(2702)"

 Select an option bit number within range. See the service manual for more details on this feature.
- 2705 –222,"Data out of range;DELETE OPTION(2705)"

 Select an option bit number within range. See the service manual for more details on this feature.

3500 -221, "Settings conflict; PULSE DELAY(3500)"

The current pulse delay value was changed because the pulse delay limits changed for the current pulse mode. For example, if pulse delay is -100 ms and the synthesizer is placed into external trigger mode, this error will be reported and the pulse delay will be set to 0 ms.

Messages

4000 -330, "Self-test failed; (4000)"

Run the instrument self-test a couple times, checking the error queue each time the self-test is run. If the error message persists, use the Erase Memory feature, press the preset key and cycle the power; try the self-test again. If the error message persists, an instrument failure may have occurred and servicing may be required. If the synthesizer is functioning to your satisfaction, you may wish to ignore the error message.

4001 -330, "Self-test failed; (4001)"

See the explanation for error number 4000.

4002 -330, "Self-test failed; (4002)"

See the explanation for error number 4000.

4003 -330, "Self-test failed; (4003)"

See the explanation for error number 4000.

4004 -330, "Self-test failed; (4004)"

See the explanation for error number 4000.

4005 -330, "Self-test failed; (4005)"

See the explanation for error number 4000.

4006 -330, "Self-test failed; (4006)"

See the explanation for error number 4000.

4007 -330, "Self-test failed; (4007)"

See the explanation for error number 4000.

4008 -330, "Self-test failed; (4008)"

See the explanation for error number 4000.

4009 -330, "Self-test failed; (4009)"

See the explanation for error number 4000.

4010 -330, "Self-test failed; (4010)"

See the explanation for error number 4000.

- 4011 -330, "Self-test failed; (4011)"

 See the explanation for error number 4000.
- 4012 -330, "Self-test failed; (4012)"

 See the explanation for error number 4000.
- 4013 -330, "Self-test failed; (4013)"

 See the explanation for error number 4000.
- 4014 -330, "Self-test failed; (4014)"

 See the explanation for error number 4000.
- 4015 -330, "Self-test failed; (4015)"

 See the explanation for error number 4000.
- 4016 -330, "Self-test failed; (4016)"

 See the explanation for error number 4000.
- 4017 -330,"Self-test failed;(4017)"

 See the explanation for error number 4000.
- 4018 -330, "Self-test failed; (4018)"

 See the explanation for error number 4000.
- 4019 -330,"Self-test failed;(4019)"

 See the explanation for error number 4000.
- 4020 -330,"Self-test failed;(4020)"

 See the explanation for error number 4000.
- 4021 -330, "Self-test failed; (4021)"

 See the explanation for error number 4000.
- 4022 -330,"Self-test failed;(4022)"

 See the explanation for error number 4000.

Messages

4023	-330, "Self-test failed; (4023)"
	See the explanation for error number 4000.
4024	-330, "Self-test failed; (4024)"
	See the explanation for error number 4000.
4025	-330, "Self-test failed; (4025)"
	See the explanation for error number 4000.
4026	-330, "Self-test failed; (4026)"
	See the explanation for error number 4000.
4027	-330,"Self-test failed;(4027)"
	See the explanation for error number 4000.
4028	-330, "Self-test failed; (4028)"
	See the explanation for error number 4000.
4029	-330, "Self-test failed; (4029)"
	See the explanation for error number 4000.
4030	-330,"Self-test failed;(4030)"
	See the explanation for error number 4000.
4031	-330, "Self-test failed; (4031)"
	See the explanation for error number 4000.
4032	-330, "Self-test failed; (4032)"
	See the explanation for error number 4000.
4033	-330, "Self-test failed; (4033)"
	See the explanation for error number 4000.
4034	-330, "Self-test failed; (4034)"
	See the explanation for error number 4000.
4035	-330,"Self-test failed;(4035)"
	See the explanation for error number 4000.

- 4036 -330, "Self-test failed; (4036)"

 See the explanation for error number 4000.

 4037 -330, "Self-test failed; (4037)"

 See the explanation for error number 4000.

 4038 -330, "Self-test failed; (4038)"

 See the explanation for error number 4000.

 4039 -330, "Self-test failed; (4039)"

 See the explanation for error number 4000.

 4040 -330, "Self-test failed; (4040)"

 See the explanation for error number 4000.

 4041 -330, "Self-test failed; (4041)"

 See the explanation for error number 4000.

 4042 -330, "Self-test failed; (4042)"

 See the explanation for error number 4000.
- 4044 -330," Self-test failed; (4044)"

 See the explanation for error number 4000.

See the explanation for error number 4000.

4043 -330, "Self-test failed; (4043)"

- 4045 -330,"Self-test failed;(4045)"

 See the explanation for error number 4000.
- 9000 -330,"Self-test failed;(9000)"

 See the explanation for error number 4000.

Error Messages

4

HP 8673 Compatibility Guide

HP 8673 Compatibility Guide

This chapter contains information pertaining to the 8673 language emulation of the HP synthesizer (with firmware revision 10.00 or later). Most aspects of the 8673 product are emulated well with the exception of step sweep operation. Compatibility to the 8673 language is close, but not exact. Great care has been exercised in this section to specify the differences. In general, most common applications should exhibit a drop in compatibility.

In Table 4-1, each HP 8673 command is listed along with its associated parameter and equivalent SCPI command (if one exists). Numbers referring to specific notes are also listed in the table. The corresponding notes follow the table.

Table 4-1. HP 8673 Command Mapping to SCPI Commands

HP 8673 Command	Parameter	Equivalent SCPI Command	See Note
AP	Level	POW:IMM	
A0, A0	AM OFF	AM:STAT OFF	14
A 1	AM OFF	AM:STAT OFF	14
A2	AM 30%	AM:SOUR EXT; TYPE LIN; SENS 30; STAT ON	11,14
А3	AM 100%	AM:SOUR EXT; TYPE LIN; SENS 100; STAT ON	11,14
BS	Backspace	Not emulated	1
BY	ByPass mode	No action	
CF	Center frequency	FREQ:CW	
CS	Clear status	*CLS	
CT	Configure trig	Not emulated	1
CW	CW frequency	FREQ:CW	
C1	ALC INTERNAL	POW:ALC INT	
C2	ALC DIODE	POW:ALC DIOD	
C3	ALC PWR MTR	POW:ALC PMET	
C4	ALC SYS mode	POW:ALC PMET	
08	dB	dB or dBm	
DF	Delta frequency	Not emulated	1
DM	dB	dB or dBm	
DN	FREQ INC (Down)	FREQ:CW DOWN	
DW	DWELL	Not emulated 1	
D0, D0	FM DEVIATION OFF	FM:STAT OFF 14	
D1	FM DEVIATION OFF	FM:STAT OFF 14	

Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

HP 8673 Command	Parameter	Equivalent SCPI Command	See Note
D2	FM DEVIATION .03 MHz	FM:SOUR EXT; SENS 30 KHZ/V; STAT ON	2,14
D3	FM DEVIATION .1 MHz	FM:SOUR EXT; SENS 100 KHZ/V; STAT ON	2,14
D4	FM DEVIATION .3 MHz	FM:SOUR EXT; SENS 300 KHZ/V; STAT ON	2,14
D5	FM DEVIATION 1 MHz	FM:SOUR EXT; SENS 1 MHZ/V; STAT ON	2,14
D6	FM DEVIATION 3 MHz	FM:SOUR EXT; SENS 3 MHZ/V; STAT ON	2,14
D7	FM DEVIATION 10 MHz	FM:SOUR EXT; SENS 10 MHZ/V; STAT ON	2,14
FA	START sweep frequency	Not emulated	1
FB	STOP sweep frequency	Not emulated	1
F1, FI	FREQ INCR	FREQ:STEP	
FN	FREQ INCR	FREQ:STEP	
FO	+ OFFSET	FREQ:OFFS	
F0—	OFFSET	FREQ:OFFS	
FR	FREQUENCY	FREQ:CW	
FS	Delta frequency	Not emulated	
FT	+ OFFSET	FREQ:OFFS	
FT—	-OFFSET	FREQ:OFFS	
GZ	GHz	GHz	
HZ	Hz	HZ	
IF	Increment frequency (Sweep)	Not emulated	
IP	Instrument preset	*RST	
KZ	kHz	кнг	
K0	AUTO PEAK OFF	Not emuelted	
K1	AUTO PEAK ON	Not emualted	
K2	AUTO PEAK	Not emualted	

Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

HP 8673 Command	Parameter	Equivalent SCPI Command	See Note
LE	Power level	POW:IMM	
L1	Front panel Learn mode	*LRN	12
L2	Special Fcn learn mode	Not emulated	1
MG	MESSAGE	DIAG_MG	5
MS	Milliseconds	MS	
MU	MULT	FREQ:MULT	
MY	MULT	FREQ:MULT	
MZ	MHz	MHZ	
M0,M0	Marker(s) OFF	Not emulated	1
M1	Marker 1	Not emulated	1
M2	Marker 2	Not emulated	1
M3	Marker 3	Not emulated	1
M4	Marker 4	Not emulated	1
M5	Marker 5	Not emulated	1
N0,N0	TUNE knob OFF	Not emulated	1
N1	TUNE knob ON	Not emulated	1
NM	Normal mode	No action	
0A	Output active parameter	DIAG:0A?	6
00	Output coupled	Not emulated	1
OK	Output lock freq	FREQ:CW?	
OL	Front panel learn mode	Not emulated	1
OR	Output request mask	*SRE?	9
OS	Output status	DIAG:0S	4
PL	Power level	POW:IMM	

Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

HP 8673 Command	Parameter	Equivalent SCPI Command	See Note
P0,P0	PULSE OFF	PULM:SOUR EXT; STAT OFF	14
P1	PULSE OFF	PULM:SOUR EXT; STAT OFF	14
P2	PULSE NORM	PULM:SOUR EXT; POL NORM; STAT ON	14
P3	PULSE COMP	PULM:SOUR EXT; POL INV; STAT ON	14
RA	RANGE	Mapped to PL	10
RC	Recall	*RCL	3
RCBS	Alternate IP	*RST; CW 14GHZ	8
RD	RANGE	Not emulated	1
RFO	RF OFF	POW:STAT OFF	
RF1	RF ON	POW:STAT ON	
RL	Recall	*RCL	3
RM	RQS mask	*SRE	9
RS	Reset sweep	Not emulated	1
RU	RANGE UP 10 dB	POW:IMM:STEP 10db; :POW:IMM UP	
RO	RF OFF	POW:STAT OFF	
R1	RF ON	POW:STAT ON	
SD	Slave down	Not emulated	1
SF	STEP	Not emulated	1
SH	Shift	No action	
SHC2	ALC SYS mode	POW:ALC PMET	
SM	MANUAL sweep	Not emulated	1
SP	STEP	Not emulated	1
SS	Steps (suffix)	No action	
ST	Store	*SAV	

Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

HP 8673 Command	Parameter	Equivalent SCPI Command	See Note
SU	Slave UP	Not emulated	1
SV	Service function	Not emulated	1
TI	Test interface	*151?	
TR	Execute trigger	Not emulated	1
T1	Meter LVL	Not emulated	1
T2	Meter AM	Not emulated	1
Т3	Meter FM	Not emulated	1
UP	FREQ INCR (up)	FREQ:CW UP	
VE	VERNIER	Mapped to PL	10
W0,W0	SWEEP MODE OFF	Not emulated	1
W1	SWEEP MODE OFF	Not emulated	1
W2	AUTO sweep	Not emulated	1
W3	MANUAL sweep	Not emulated	1
W4	SINGLE sweep	Not emulated	1
W 5	SINGLE sweep: arm only	Not emulated	1
W6	SINGLE sweep: arm and	Not emulated	1
W 7	Master sweep	Not emulated	1
W8	Slave sweep	Not emulated	1
XF	XFREQ	No action	

Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

HP 8673	Parameter	Equivalent SCPI Command	See
Command	. Bramoto		Note
X0,X0	Marker(s) OFF	Not emulated	1
X1	Marker 1	Not emulated	1
X2	Marker 2	Not emulated	1
Х3	Marker 3	Not emulated	1
X4	Marker 4	Not emulated	1
X 5	Marker 5	Not emulated	1
YO	FREQ display off	DISP:STAT OFF	
Y1	FREQ display on	DISP:STAT ON	
@A	Start of FP learn mode	Not emulated	1
@1	Prefix for request mask	*SRE	9
@2	Deferred execution mode	Not emulated	1
@3	Immediate execution mode	Not emulated	1
@9	Start of special function learn mode	Not emulated	1
SCPI	Change to SCPI	SYST:LANG SCPI	13
SE	Output error string	SYST:ERR?	13
SYST:LANG?	Output language	SYST:LANG?	13
SYSTEM:SET	Learn string	SYSTEM:SET	12

Notes:

- Note 1 The command is accepted, but front panel and remote error messages are given specifying that this command is not emulated.
- Note 2 For CW frequencies above 1 GHz, available sensitivities are as shown. When the CW frequency is below 1 GHz, sensitivity is reduced by factors of four at logarithmic intervals (see the command FM:DEV in earlier section). For HP 83731A/32A model synthesizers, only 5 MHz/Volt is available at 1 GHz and above. In addition, HP 83731A/32A model synthesizers have reduced sensitivities for CW frequencies below 1 GHz.
- Note 3 Recall register 0 is equivalent to an instrument preset (IP).
- Note 4 Although the HP 8673 specifies that two binary bytes will be returned on the bus, in some cases only one byte is returned. The HP 837XX synthesizers always return two binary bytes (status + extended) plus a line-feed character.
- Note 5 The MG command typically returns a +<digit>, or a +<digit><digit> instead of the HP 8673 fixed format of <digit><digit>. The error message numbers are similar to those of an HP 8673. For any significant development and debugging work, it is recommended that the string query command "SE" (SYSTem:ERRor) be used for a more accurate, detailed error message.
- Note 6 This command is not accessible through normal SCPI. When either freqMult != 1 or freqOffset != 0, the output of the frequency parameter becomes a variable format instead of a fixed precision format of 11 digits.
- Note 7 Except for power level and sweep parameters that are not emulated, all parameters as specified in the *HP 8673B User's Guide* are the same. The power level after an instrument preset (IP) will be the lowest available depending upon model and options.
- Note 8 The RCBS command is mapped to an instrument preset (IP), except with the addition of setting the frequency to 14 GHz. The frequency multiply and ALC modes are not preserved.

- Note 9 This command has the same functionality as the SCPI feature *SRE; however, set and query forms are a single byte of binary data as in the HP 8673B.
- Note 10 The RA (Range) and "VE" (Venier) commands emulate, in most cases, the personality of the 8673. Some differences are:
 - RA does NOT map directly into the attenuator state. The synthesizer has different attenuator band cross points than the 8673. In addition, these band cross points are instrument state dependent. See Linear AM mode of the main manual. However, the desired power level will be delivered.
 - The preferred range of "VE" is from -10 to 0. Values outside
 this range will be accepted. "VE" and "RA" may change
 values at a warm power up, register recall, and learn string
 except; however, their sum will remain the same in such
 transitions.
 - Some error conditions, like sending RA-50 dB on an 83731/32 unit without attenuator may have unspecified side effects. Similar for sending RA-100 dB on 83731A/32A units.
- Note 11 Commands A2 and A3 are mapped to :AM:SOUR EXT; TYPE LOG; STAT ON for HP 83731A/32A synthesizers. Linear modulation is not available on HP 83731A/32A synthesizers.
- Note 12 The SCPI version of learn strings is operated through this command. However, an approximately 4200 byte string is required instead of a 96 byte string. Imbedded in the string, the initial sequence will be ":SYSTEM:SET . . . " instead of "@A": this should make no difference to the user. The following RMB program is an example of usage:
 - 10 DIM A\$ [5000]
 - 20 OUTPUT 719;"L1"
 - 30 ENTER 719 USING "-K"; A\$
 - 40 PRINT "String Read"
 - 50 PAUSE
 - 60
 - 70 PRINT "Sending String"
 - 80 OUTPUT 719;A\$
 - 90 END

Note 13 Supplemental commands to 8673 that allow some key needed

functionality.

Note 14 The HP 83711A/12A and HP 83711B/12B synthesizers do

not support modulation. Therefore, the following HP 8673 commands will produce an "Undefined Header" error message if

sent:

Amplitude Modulation A0, A0, A1, A2, A3

Frequency Modulation DO, D0, D1, D2, D3, D4, D5,

D6, D7

Pulse Modulation PO, P0, P1, P2, P3

Out of Range Personality Difference

The HP synthesizers limit a command argument to the closest allowable value; the HP 8673 rejects an out of range command and will not change the current state value.

Rounding Personality Difference

The HP synthesizers generally round numbers according to IEEE rules; the HP 8673 rounds numbers down to a more negative value.

Power Suffixes

Power suffixes dB or dBm are generally accepted for all power level commands.

Output Active Parameter

The active parameter is not coordinated with the front panel.

System ALC Mode

The C4 (system ALC mode) is mapped to the ALC:SOUR PMETer command.

NOTE

In this mode, POW:LEV is set to the value of POW:ALC:PMET[:LEV]. Also, leveling is expected at the ALC IN connector of 0 V = 0 dBm.

Query Return Format

The query return format, from a synthesizer product in 8673 emulation mode, can have significant differences. In particular, the synthesizer products will ALWAYS follow every query return string with a "line feed" (i.e., 0x0A). This can cause problems, especially when RMB code has been specifically tuned to the two byte binary format return of the 8673 "OS" command. It will be a common problem for existing programs to leave this third byte (i.e., line feed) in the output queue. This will eventually produce a "-410 query interrupted" error when the next command is sent. If a current RMB program has the following commands:

```
OUTPUT 719 USING "2A"; "OS"
ENTER 719 USING "%,B,B"; Stat1,Stat2
```

It is recommended to add an extra query byte variable to handle this carriage return.

OUTPUT 719 USING "2A";"OS"
ENTER 719 USING "%,B,B,B";Stat1,Stat2,Extra

HP 8673 Status Bits

This section describes the HP 8673 status and extended bytes.

HP 8673 Status Bits

Images

Table 4-2. HP 8673 Status and Extended Bytes

Byte	Weight	Description	HP 8673		
Status Byte	Status Byte				
Bit 1	1	Front panel key pressed	Front panel key pressed		
Bit 2	2	Operation complete	Front panel entry complete		
Bit 3	4	Change in ESB	Change in ESB		
Bit 4	8	Source settled	Source settled		
Bit 5	16	0	End of sweep		
Bit 6	32	Command error	Entry error		
Bit 7	64	RQS bit request service	ROS bit request service		
Bit 8	128	0	Change in sweep parameter		
Extended Byte					
Bit 1	1	0	Self test failed		
Bit 2	2	Modulation error	FM over modulation		
Bit 3	4	0	0		
Bit 4	8	0	External reference		
Bit 5	16	Frequency error	Not phased locked		
Bit 6	32	0	Power failure / on		
Bit 7	64	ALC unleveled	ALC unleveled		
Bit 8	128	0			

Event Register Bits

The status byte is an event register. Bits are set when the event occurs, and cleared only when read with the OS command.

Condition Register Bits

The extended status byte is a condition register. Bits are set and cleared with the condition.

Source Settled Bit Personality Difference

The HP synthesizers set the source settled bit (bit 4 of the primary status byte) anytime a parameter is changed that effects conditions at the RF output. The HP 8673 source settled bit applies primarily to changes in power level.

ALC Unleveled and Frequency Error Bits

When the RF is turned off on the HP 8673, the ALC unleveled and frequency error extended status bits are set. This condition does not occur on the HP synthesizers.

HP 8673 Status Bits

Change in ESB Bit

The change in ESB bit for the HP synthesizers will only be turned on when any bit of the extended byte becomes true; not when any bit becomes false as in the HP 8673.

Front Panel Entry Complete Bit

The HP 8673 front panel entry complete bit, in remote programming mode, applies only to changes in frequency increment, offset, multiply, and in some command argument out of limit conditions. For HP synthesizer compatibility, the status "Operation Complete" is mapped to this bit.

5

Legal and Regulatory Information

Legal and Regulatory Information

This chapter contains information pertaining to SCPI conformance and the warranty.

SCPI Conformance

The Synthesizer uses the Standard Commands for Programmable Instruments (SCPI) language for HP-IB communication.

The SCPI commands and queries that the Synthesizer understands are listed and described individually in Chapter 2, "Programming Commands."

Table 5-1 lists all of the commands and queries that the Synthesizer understands and whether they are SCPI approved, SCPI confirmed, or non-SCPI. The commands and queries that are labeled "IEEE 488.2 Required" and "IEEE 488.2 Optional" are also non-SCPI.

NOTE

In the table, if a command is terminated with a question mark enclosed in parentheses [(?)], that particular syntax is both a command and a query.

The SCPI version number that the Synthesizer supports at the writing of this manual is 1991.0

If you need more information about SCPI, refer to the *Beginner's Guide to SCPI* (HP part number H2325-90001).

Legal and Regulatory Information

SCPI Conformance

Table 5-1. SCPI Conformance

Programming Command	Status
ABORt	SCPI Confirmed
*cls	IEEE 488.2 Required
DISPlay[:WINDow][:STATe](?)	SCPI Confirmed
*DMC	IEEE 488.2 Optional
*EMC(?)	IEEE 488.2 Optional
*ESE(?)	IEEE 488.2 Required
*ESR?	IEEE 488.2 Required
*GMC?	IEEE 488.2 Optional
*IDN?	IEEE 488.2 Required
INITiate:CONTinuous(?)	SCPI Confirmed
*LMC?	IEEE 488.2 Optional
*LRN?	IEEE 488.2 Optional
MEMory:CATalog[:ALL]	SCPI-Confirmed
MEMory:CATalog:TABLe	SCPI-Confirmed
MEMory:CATalog:MACRo	SCPI-Confirmed
MEMory:RAM:INITialize	Non-SCPI
MEMory:TABle:SElect(?)	SCPI-Confirmed
MEMory:TABLe:FREQuency(?)	SCPI-Confirmed
MEMory:TABLe:FREQuency:POINts?	SCPI-Confirmed
MEMory:TABLe:LOSS[:MAGNitude][?]	SCPI-Confirmed
MEMory:TABle:LOSS[:MAGNitude]:POINts?	SCPI-Confirmed
*OPC(?)	IEEE 488.2 Required

Table 5-1. SCPI Conformance (continued)

Programming Command Status		
	IEEE 488.2 Optional	
*OPT?	· · · · · · · · · · · · · · · · · · ·	
OUTPut:IMPedance?	SCPI Confirmed	
OUTPut:PROTection[:STATe](?)	SCPI Confirmed	
OUTPut(:STATe)(?)	SCPI Confirmed	
*PMC	IEEE 488.2 Optional	
*PSC(?)	IEEE 488.2 Optional	
*RCL	IEEE 488.2 Optional	
*RMC	IEEE 488.2 Optional	
*RST	IEEE 488.2 Required	
*SAV	IEEE 488.2 Optional	
(SOURce(1):)AM(:DEPTH)	SCPI Confirmed	
[SOURce[1]:]AM[:DEPTH]:STEP[:INCRement]	SCPI Confirmed	
[SOURce[1]:]AM:FEED	SCPI Confirmed	
(SOURce[1]:]AM:INTernal:FREQuency	SCPI Confirmed	
[SOURce[1]:]AM:INTernal:FREQuency:STEP[:INCRement]	SCPI Confirmed	
[SOURce[1]:]AM:INTernal:FUNC	SCPI Confirmed	
[SOURce[1]:]AM:SENSitivity	SCPI Confirmed	
[SOURce[1]:]AM:SOURce	SCPI Confirmed	
[SOURce[1]:]AM:STATe(?)	SCPI Confirmed	
[SOURce[1]:]AM:TYPE[?]	SCPI Confirmed	
[SOURce[1]:]CORRection:FLATness[:DATA]	SCPI Confirmed	
[SOURce[1]:]CORRection:FLATness:POINts	SCPI Confirmed	

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command	Status
[SOURce[1]:]CORRection:STATe[?]	SCPI Confirmed
[SOURce[1]:]CORRection:CSET[:SELect](?)	SCPI Confirmed
[SOURce[1]:]CORRection:CSET:STATe(?)	SCPI Confirmed
[SOURce[1]:]FM:COUPling(?)	SCPI Confirmed
[SOURce[1]:]FM[:DEViation]	SCPI Confirmed
[SOURce[1]:]FM[:DEViation]:STEP[:INCRement]	SCPI Confirmed
[SOURce[1]:]FM:FEED	SCPI Confirmed
[SOURce[1]:]FM:INTernal:FREQuency	SCPI Confirmed
[SOURce[1]:]FM:INTernal:FREQuency:STEP[:INCRement]	SCPI Confirmed
[SOURce[1]:]FM:INTernal:FUNC	SCPI Confirmed
[SOURce[1]:]FM:SENSitivity?	SCPI Confirmed
[SOURce[1]:]FM:SOURce	SCPI Confirmed
[SOURce[1]:]FM:STATe(?)	SCPI Confirmed
[SOURce[1]:]FREQuency:[:CW :FIXed][?]	SCPI Confirmed
[SOURce[1]:]FREQuency:[:CW :FIXed]:STEP(?)	SCPI Confirmed
[SOURce[1]:]FREQuency:MULTiplier(?)	SCPI Confirmed
[SOURce[1]:]FREQuency:MULTiplier:STEP(?)	SCPI Confirmed
[SOURce[1]:]MODulation:AOFF	Non-SCPI
[SOURce[1]:]MODulation:STATe(?)	Non-SCPI
[SOURce[1]:]PM:COUPling	SCPi Confirmed
[SOURce[1]:]PM[:DEViation]	SCPI Confirmed
[SOURce[1]:]PM[:DEViation]:STEP[:INCRement]	SCPI Confirmed

Table 5-1. SCPI Conformance (continued)

Programming Command	Status
[SOURce[1]:]PM:FEED	SCPI Confirmed
[SOURce[1]:]PM:INTernal:FREQuency	SCPI Confirmed
[SOURce[1]:]PM:INTernal:FREQuency:STEP[:INCRement]	SCPI Confirmed
[SOURce[1]:]PM:INTernal:FUNC	SCPł Confirmed
[SOURce[1]:]PM:RANGe	SCPI Confirmed
[SOURce[1]:]PM:SENSitivity	SCPI Confirmed
[SOURce[1]:]PM:SOURce	SCPI Confirmed
[SOURce[1]:]PM:STATe	SCPI Confirmed
[SOURce[1]:]POWer:ALC:PMETer(?)	Non-SCPI
[SOURce[1]:]POWer:ALC:PMETer:STEP(?)	Non-SCPI
[SOURce[1]:]POWer:ALC:SOURce[?]	SCPI Confirmed
[SOURce(1):]POWer:ATTenuation:AUTO(?)	SCPI Confirmed
[SOURce[1]:]POWer[:LEVel](?)	SCPI Confirmed
[SOURce(1):]POWer[:LEVel]:STEP(?)	SCPI Confirmed
[SOURce[1]:]POWer:PROTection:STATe(?)	SCPI Confirmed
[SOURce[1]:]PULM:EXTernal:POLarity[?]	SCPI Confirmed
[SOURce(1]:]PULM:SOURce(?)	SCPI Confirmed
[SOURce[1]:]PULM:STATe(?)	SCPI Confirmed
[SOURce[1]:]PULSe:DELay[?]	SCPI Confirmed
[SOURce[1]:]PULSe:DELay:STEP(?)	SCPI Confirmed
[SOURce[1]:]PULSe:DOUBle[:STATe] ?]	SCPI Confirmed
[SOURce[1]:]PULSe:FREQuency(?)	SCPI Confirmed

Legal and Regulatory Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command	Status
[SOURce[1]:]PULSe:FREQuency:STEP(?)	SCPI Confirmed
[SOURce[1]:]PULSe:PERiod(?)	SCPI Confirmed
[SOURce[1]:]PULSe:PERiod:STEP[?]	SCPI Confirmed
[SOURce[1]:]PULSe:TRANsition[:LEADing](?)	SCPI Confirmed
[SOURce[1]:]PULSe:TRANsition:STATe(?)	SCPI Confirmed
[SOURce[1]:]PULSe:WIDTh(?)	SCPI Confirmed
[SOURce[1]:]PULSe:WIDTh:STEP(?)	SCPI Confirmed
[SOURce[1]:]ROSCillator:SOURce?	SCPI Confirmed
*SRE(?)	IEEE 488.2 Required
STATus: OPERation: CONDition?	SCPI Confirmed
STATus:OPERation:ENABLe(?)	SCPI Confirmed
STATus:OPERation[:EVENt]?	SCPI Confirmed

Table 5-1. SCPI Conformance (continued)

Table 3-1. 301 1 Control and C		
Programming Command	Status	
STATus:OPERation:NTRansition(?)	SCPI Confirmed	
STATus:OPERation:PTRansition ?	SCPI Confirmed	
STATus:PRESet	SCPI Confirmed	
STATus:QUEStionable:CONDition?	SCPI Confirmed	
STATus:QUEStionable:ENABle(?)	SCPI Confirmed	
STATus:QUEStionable[:EVENt]?	SCPI Confirmed	
STATus:QUEStionable:NTRansition(?)	SCPI Confirmed	
STATus:QUEStionable:PTRansition(?)	SCPI Confirmed	
*STB?	IEEE 488.2 Required	
SYSTem:COMMunicate:GPIB:ADDRess(?)	SCPI Confirmed	
SYSTem:COMMunicate:PMETer:ADDRess(?)	Non-SCPI	
SYSTem:ERRor?	SCPI Confirmed	
SYSTem:KEY(?)	SCPI Confirmed	
SYSTem:LANGuage(?)	SCPI Confirmed	
SYSTem:PRESet	SCPI Confirmed	
SYSTem:VERSion?	SCPI Confirmed	

Legal and Regulatory Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command	Status
TRIGger[:SEQuence[1]]:STARt]:SOURce(?)	SCPI Confirmed
TRIGger:SEQuence2 :STDP:SOURce(?)	SCPI Confirmed
TRIGger:SEQuence2:SLOPe	SCPI Confirmed
*TST?	IEEE 488.2 Required
UNIT:FREQuency(?)	SCPI Confirmed
UNIT:POWer :VOLTage(?)	SCPI Confirmed
UNIT:TIME(?)	SCPI Confirmed
*WAI	IEEE 488.2 Required

Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, (NIST), to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Regulatory Information

The declaration of conformity can be found in the user's guide and the calibration guide for this instrument.

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

Hewlett-Packard Sales and Service Offices

US FIELD OPERATIONS

Headquarters

Hewlett-Packard Co. 19320 Pruneridge Ave. Cupertino, CA 95014 (800) 752-0900

Atlanta Annex Hewlett-Packard Co. 2124 Barrett Park Drive Kennesaw, GA 30144 (404) 648-0000

California, Northern

Hewlett-Packard Co. 301 E. Evelyn Mountain View, CA 94041 (415) 694-2000

Illinois

Hewlett-Packard Co. 5201 Tollview Drive Rolling Meadows, IL 60008 (708) 255-9800

California, Southern

Hewlett-Packard Co. 1421 South Manhattan Ave. Fullerton, CA 92631 (714) 999-6700

New Jersey

Hewlett-Packard Co. 150 Green Pond Rd. Rockaway, NJ 07866 (201) 586-5400

Colorado

Hewlett-Packard Co. 24 Inverness Place, East Englewood, CO 80112 (303) 649-5512

Texas

Hewlett-Packard Co. 930 E. Campbell Rd. Richardson, TX 75081 (214) 231-6101

EUROPEAN FIELD OPERATIONS

Headquarters

Hewlett-Packard S.A. 150, Route du Nant-d'Avril 1217 Meyrin 2/Geneva Switzerland (41 22) 780.8111

France

Hewlett-Packard France 1 Avenue Du Canada Zone D'Activite De Courtaboeuf F-91947 Les Ulis Cedex France

(33 1) 69 82 60 60

Germany

Hewlett-Packard GmbH Hewlett-Packard Strasse 61352 Bad Homburg v.d.H Germany (49 6172) 16-0

Great Britain

Hewlett-Packard Ltd. Eskdale Road, Winnersh Triangle Wokingham, Berkshire RG41 5DZ England (44 734) 696622

INTERCON FIELD OPERATIONS

Headquarters

Hewlett-Packard Company 3495 Deer Creek Road Palo Alto, California, USA 94304-1316 (415) 857-5027

Australia

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 (61 3) 895-2895

Canada

17500 South Service Road Trans- Canada Highway Kirkland, Quebec H9J 2X8 Canada (514) 697-4232

Hewlett-Packard (Canada) Ltd. China Hewlett-Packard Company 38 Bei San Huan X1 Road Shuang Yu Shu Hai Dian District Beijing, China (86 1) 256-6888

Japan

Hewlett-Packard Japan, Ltd. 1-27-15 Yabe, Sagamihara Kanagawa 229, Japan (81 427) 59-1311

Singapore

(65) 291-9088

Hewlett-Packard Singapore (Pte.) Ltd. Hewlett-Packard Taiwan 150 Beach Road #29-00 Gateway West Singapore 0718

Taiwan

8th Floor, H-P Building 337 Fu Hsing North Road Taipei, Taiwan (886 2) 712-0404

Legal and Regulatory Information

Index

Index

```
A abort statement, 1-8
   AC FM, 2h-21
   AC PM, 2h-43
    address
      HP-IB, 2j-5
    advantages
      DC FM, 2h-21
    ALC source, 2a-7
    ALC unleveled bits, 8673, 4-17
    AM. See log AM
    AM[:DEPTh], 2h-3
    AM[:DEPTh]:STEP, 2h-6
    AM:INT:FREQ, 2h-8
    AM:INT:FREQ:STEP, 2h-10
    AM:INT:FUNC, 2h-12
    AM:SENSitivity, 2h-14
    AM:SOURce, 2h-16
    AM:STATe, 2h-18
    AM:TYPE, 2h-20
    angle brackets, 1-17
    attenuator hold function, 2k-7
      advantages, 2k-7
      disadvantages, 2k-8
    average power inhibit function, 2k-10
{\bf B} bits
      ALC unleveled, 4-17
      change in ESB, 4-18
      condition register, 4-17
      event register, 4-17
      F.P. entry complete, 4-18
      frequency error, 4-17
      source settled, 4-17
    book introduction, iv
    Boolean parameters
      discussed in detail, 1-37
    brackets, angle, 1-17
```

```
C calibration data
     factory, 2d-5
   carrier deviation, 2h-34
   change in ESB bits, 8673, 4-18
   clear statement, 1-11
    *CLS, 21-9
   colon
      examples using, 1-24
      proper use of, 1-23, 1-24, 1-37
      types of command where used, 1-21
    command examples, 1-17
    commands, 1-29
      common, 1-20
      defined, 1-16
      event, 1-25
      implied, 1-25
      query, 1-25
      subsystem, 1-20, 1-21
      syntax overview, 1-31, 1-32
    command statements, fundamentals, 1-7
    command trees
      defined, 1-22
      how to change paths, 1-22
      how to read, 1-22
      using efficiently, 1-24
    commas
      proper use of, 1-23, 1-33
    common commands, 1-20, 1-23
      defined, 1-20
    compatibility, 8673 to SCPI, 4-3
    condition register bits, 8673, 4-17
    controller
      defined, 1-16
    controller, definition of, 1-5
    CORRection:CSET[:SELect], 2e-15
    CORRection: CSET: STATe, 2e-17
    CORRection:FLATness[:DATA], 2e-19
    CORRection:FLATness:POINts, 2e-21
    CORRection[:STATe], 2e-23
    current path
      defined, 1-22
      rules for setting, 1-22
```

```
D data
      factory calibration, 2d-5
   DC FM, 2h-21
      advantages, 2h-21
      disadvantages, 2h-21
   DC PM, 2h-43
   default suffix
      frequency, 2j-9
      power, 2j-12
      time, 2j-14
   definitions of terms, 1-16
   deviation
      carrier, 2h-34
      frequency, 2h-34
   device enter statement, 1-13
   device output statement, 1-12
   disadvantages
     DC FM, 2h-21
   discrete parameters
      discussed in detail, 1-37
   discrete response data
     discussed in detail, 1-39
   DISPlay[:WINDow][:STATe], 2g-3
   *DMC, 2f-3
   doublet pulse, example program, 1-55
E *EMC, 2f-4
   END, 1-17
   END[end], 1-30
   enter statement, 1-13
   EOI, 1-17, 1-30
   EOI, suppression of, 1-13
   error message
      action required, 3-3
      detailed description, 3-3
      hardware failures, 3-4
      manual error number, 3-3
      SCPI error message, 3-3
      SCPI error number, 3-3
   error message format, 3-3
   error messages list, 3-5-47
   error queue
      front panel, 2c-7
      HP-IB, 2c-7
    errors
      permanent, 3-2
    *ESE, 21-11
    *ESR?, 21-13
```

```
event register bits, 8673, 4-17
   events
     event commands, 1-25
   example program
     doublet pulse, 1-55
     external triggered pulse mod, 1-51
     gated pulse mod, 1-57
     HP-IB check, 1-41
     internal log AM, 1-59
     internally leveled AC coupled FM, 1-45
     internally leveled CW sig., 1-44
     internal pulse mod, 1-49
     int leveled AC-coupled int FM, 1-46
     level correction, 1-62
     local lockout, 1-42
     log AM/pulse mod, 1-61
     power sweep, 1-48
     repetitive ext pulse mod, 1-53
     use of save/recall, 1-67
   example programs, 1-40-68
   examples, simple program messages, 1-26
   exponential AM. See log AM
   extended bits, 8673, 4-16
   extended numeric parameters
     discussed in detail, 1-36
   external timebase reference, 2c-6
   external triggered pulse mod, example program, 1-51
F factory calibration data, 2d-5
   firmware revision number, 2c-3
   FM
     AC, 2h-21
     DC, 2h-21
   FM:COUPling, 2h-21
   FM[:DEViation], 2h-23
   FM[:DEViation]:STEP, 2h-26
   FM:INT:FREQ, 2h-28
   FM:INT:FREQ:STEP, 2h-30
   FM:INT:FUNC, 2h-32
   FM:SENSitivity, 2h-34
   FM sensitivity. See sensitivity
   FM:SOURce, 2h-37
   FM:STATe, 2h-39
   forgiving listening, 1-20, 1-34
   F.P. entry complete bit, 8673, 4-18
   FREQuency[:CW|:FIXed], 2b-3
   FREQuency[:CW|:FIXed]:STEP, 2b-5
```

event commands, 1-25

frequency deviation, 2h-34 frequency error bits, 8673, 4-17 FREQuency:MULTiplier, 2b-7 FREQuency:MULTiplier:STEP, 2b-10 frequency multiplier value, 2b-7 functional verification. *See* self test

G gated pulse mod, example program, 1-57
*GMC?, 2f-6
GPIB check, example program, 1-41

H HP-IB

technical standard, 1-69 HP-IB address, 2j-5 HP-IB check, example program, 1-41 HP-IB connecting cables, 1-3 HP-IB, definition of, 1-2

I *IDN?, 2c-3 IEEE

mailing address, 1-69 IEEE 488.1 how to get a copy, 1-69 IEEE 488.2 how to get a copy, 1-69 implied commands, 1-25 initial power meter reading, 2a-3 instruments defined, 1-16 instrument state recall, 2d-6 instrument state save, 2d-10 integer response data discussed in detail, 1-38 integers rounding, 1-35 internal leveled AC-coupled FM, example program, 1-45 internal leveled CW, example program, 1-44 internal log AM, example program, 1-59 internal pulse mod, example program, 1-49 In This Book, iv int leveled AC-coupled int FM, example program, 1-46 introduction

book, iv

K key codes, 2g-5

L level correction. See level correct level correction, example program, 1-62 linear AM, 2h-20 listener, definition of, 1-5
*LMC?, 2f-7 local lockout, example program, 1-42 local lockout statement, 1-10 local statement, 1-10 log AM/pulse mod, example program, 1-61 logarithmic AM. See log AM
*LRN?, 2d-3

M manual pulse fall time selection, 2h-95 manual pulse rise time selection, 2h-89 MEMory:CATalog[:ALL]?, 2e-3 MEMory: CATalog: TABLe?, 2e-4 MEMory:FREE:MACRo?, 2f-8 MEMory:RAM:INITialize, 2d-5 ${\tt MEMory:TABLe:FREQuency,\ 2e-5}$ MEMory:TABLe:FREQuency:POINts?, 2e-8 MEMory:TABLe:LOSS[:MAGNitude], 2e-9 MEMory:TABLe:LOSS[:MAGNitude]:POINts?, 2e-12 MEMory:TABLe:SELect, 2e-13 messages details of program and response, 1-20 simple examples, 1-26 message terminators response message terminator defined, 1-33 mnemonics, 1-16, 1-17 conventions for query commands, 1-16 long form, 1-17 short form, 1-17 MODulation: AOFF, 2h-41 modulation index, 2h-21 MODulation:OVDR, 2h-42 multiplier value, 2b-7

```
N new line
      affect on current path, 1-23
      in response message terminator, 1-33
      symbol used for, 1-17
      use as a program message terminator, 1-18
      use as a response message terminator, 1-18
      with HP BASIC OUTPUT statements, 1-30
    new line[new line]
      use as a program message terminator, 1-30
    number of points, 2e-8, 2e-12
    numeric parameters
      discussed in detail, 1-35
O *OPC, 2j-3
    Operation Condition register, 21-19
    Operation Condition register bit definitions, 2l-19
    Operation Event Enable register, 21-21
    Operation Event Enable register bit definitions, 21-21
    Operation Event register, 21-24
    Operation Event register bit definitions, 21-24
    Operation Negative Transition register, 21-27
    Operation Negative Transition register bit definitions, 21-27
    Operation Positive Transition register, 21-30
    Operation Positive Transition register bit definitions, 21-30
    OPT?, 2c-4
    optional parameters, 1-25
    option numbers, 2c-4
    out of range, 8673, 4-12
    output active parameter, 8673, 4-13
    OUTPut:IMPedance?, 2c-5
    OUTPut:PROTection[:STATe], 2k-3
    OUTPut[:STATe], 2k-5
    output statement, 1-12
P parameters
      Boolean, 1-37
      discrete, 1-37
      extended numeric, 1-36
      numeric, 1-35
      optional, 1-25
    parser
      explained briefly, 1-22
    permanent errors, 3-2
    PM
      AC, 2h-43
      DC, 2h-43
    *PMC, 2f-9
```

PM:COUPling, 2h-43 PM[:DEViation], 2h-45 PM[:DEViation]:STEP, 2h-48 PM:INT:FREQ, 2h-50 PM:INT:FREQ:STEP, 2h-53 PM:INT:FUNC, 2h-55 PM:RANGe, 2h-57 PM:SENSitivity, 2h-59 PM:SOURce, 2h-62 PM:STATe, 2h-64 POWer: ALC: PMETer, 2a-3 POWer: ALC: PMETer: STEP, 2a-5 POWer: ALC: SOURce, 2a-7 POWer: ATTenuation: AUTO, 2k-7 POWer[:LEVel], 2i-3 POWer[:LEVel]:STEP, 2i-6 POWer:PROTection:STATe, 2k-10 power suffixes, 8673, 4-12 power sweep, example program, 1-48 precise talking, 1-20, 1-34 preset conditions instrument, 2d-7, 2d-11 status register, 21-33 preset state, 2d-7, 2d-11 program and response messages, 1-20 program example doublet pulse, 1-55 external triggered pulse mod, 1-51 gated pulse mod, 1-57 HP-IB check, 1-41 internal log AM, 1-59 internally leveled AC coupled FM, 1-45 internally leveled CW sig., 1-44 internal pulse mod, 1-49 int leveled AC-coupled int FM, 1-46 local lockout, 1-42 log AM/pulse mod, 1-61 power sweep, 1-48 repetitive ext pulse mod, 1-53 save/recall, 1-67 program examples, 1-40-68 program message examples, 1-26 program messages defined, 1-16 program message terminators affect on current path, 1-23 defined, 1-30 syntax diagram, 1-30 use in examples, 1-18

```
syntax conventions, 2-2
    *PSC, 21-15
    PULM:EXTernal:POLarity, 2h-66
   PULM:SOURce, 2h-68
   PULM:STATe, 2h-70
   PULSe:DELay, 2h-72
   PULSe:DELay:STEP, 2h-75
   PULSe:DOUBLe[:STATE], 2h-77
   pulsed power pre-calibration program, 2k-11
   pulse fall time selection, 2h-95
   PULSe:FREQuency, 2h-79
   PULSe:FREQuency:STEP, 2h-82
   pulse modulation
      inverted, 2h-66
      non-inverted, 2h-66
    pulse modulation source, 2h-68
   PULSe:PERiod, 2h-84
   PULSe:PERiod:STEP, 2h-87
   pulse rise time selection, 2h-89
   PULSe:TRANsition
      TRAiling, 2h-95
   PULSe:TRANsition[:LEADing], 2h-89
   PULSe:TRANsition:STATe, 2h-92
   pulse trigger slope, 2h-105
   pulse trigger source, 2h-103
   pulse trigger stop source, 2h-106
   PULSe:WIDTh, 2h-98
   PULSe:WIDTh:STEP, 2h-101
Q queries
      defined, 1-16
      discussed, 1-20
   query commands, 1-25
      query only, 1-25
   query only, 1-25
    Questionable Condition register, 21-35
    Questionable Condition register bit definitions, 21-35
    Questionable Event Enable register, 21-37
    Questionable Event Enable register bit definitions, 21-37
    Questionable Event register, 21-40
    Questionable Event register bit definitions, 21-40
    Questionable Negative Transition register, 21-43
    Questionable Negative Transition register bit definitions, 21-43
    Questionable Positive Transition register, 21-46
    Questionable Positive Transition register bit definitions, 2l-46
```

programming commands

```
R *RCL, 2d-6
   recall instrument state, 2d-6
   recall/save, example program, 1-67
   Recorder Output (power meter), 2a-3
   related documents, 1-15
   remote statement, 1-9
   repetitive ext pulse mod, example program, 1-53
   response data
      discrete, 1-39
      integer, 1-38
   response examples, 1-18
    response messages
      defined, 1-16
      discussed in detail, 1-29
      syntax, 1-33
    response message terminators, 1-18
      defined, 1-33
    revision number
      firmware, 2c-3
    RF protection circuit, 2k-3
    *RMC, 2f-10
    root
      defined, 1-22
    root commands
      defined, 1-22
    ROSCillator:SOURce?, 2c-6
    rounding, 1-35
    *RST, 2d-7
S *SAV, 2d-10
    save instrument state, 2d-10
    save/recall, example program, 1-67
    SCPI compatibility, 8673, 4-3
    SCPI conformance information, 5-3
    SCPI conformance table, 5-3-10
    SCPI version number, 2c-9
    semicolon
      examples using, 1-24
      problems with input statements, 1-18
      proper use of, 1-23, 1-24
    sensitivity, 2h-34
    sensitivity, PM, 2h-59
    serial number, 2c-3
    Service Request Enable register, 21-17
    Service Request Enable register bit definitions, 21-17
    source
      ALC, 2a-7
      pulse modulation, 2h-68
```

```
[SOURce[1]:]AM[:DEPTh], 2h-3
[SOURce[1]:]AM[:DEPTh]:STEP, 2h-6
[SOURce[1]:]AM:INT:FREQ, 2h-8
[SOURce[1]:]AM:INT:FREQ:STEP, 2h-10
[SOURce[1]:]AM:INT:FUNC, 2h-12
[SOURce[1]:]AM:SENSitivity, 2h-14
[SOURce[1]:]AM:SOURce, 2h-16
[SOURce[1]:]AM:STATe, 2h-18
[SOURce[1]:]AM:TYPE, 2h-20
[SOURce[1]:]CORRection:CSET[:SELect], 2e-15
[SOURce[1]:]CORRection:CSET:STATe, 2e-17
[SOURce[1]:]CORRection:FLATness[:DATA], 2e-19
[SOURce[1]:]CORRection:FLATness:POINts, 2e-21
[SOURce[1]:]CORRection[:STATe], 2e-23
[SOURce[1]:]FM:COUPling, 2h-21
[SOURce[1]:]FM[:DEViation], 2h-23
[SOURce[1]:]FM[:DEViation]:STEP, 2h-26
[SOURce[1]:]FM:INT:FREQ, 2h-28
[SOURce[1]:]FM:INT:FREQ:STEP, 2h-30
[SOURce[1]:]FM:INT:FUNC, 2h-32
[SOURce[1]:]FM:SENSitivity, 2h-34
[SOURce[1]:]FM:SOURce, 2h-37
[SOURce[1]:]FM:STATe, 2h-39
[SOURce[1]:]FREQuency[:CW]:FIXed], 2b-3
[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP, 2b-5
[SOURce[1]:]FREQuency:MULTiplier, 2b-7
[SOURce[1]:]FREQuency:MULTiplier:STEP, 2b-10
[SOURce[1]:]MODulation:AOFF, 2h-41
[SOURce[1]:]MODulation:OVDR, 2h-42
[SOURce[1]:]PM:COUPling, 2h-43
[SOURce[1]:]PM[:DEViation], 2h-45
[SOURce[1]:]PM[:DEViation]:STEP, 2h-48
[SOURce[1]: PM:INT:FREQ, 2h-50
[SOURce[1]:]PM:INT:FREQ:STEP, 2h-53
[SOURce[1]:]PM:INT:FUNC, 2h-55
[SOURce[1]:]PM:RANGe, 2h-57
[SOURce[1]:]PM:SENSitivity, 2h-59
[SOURce[1]:]PM:SOURce, 2h-62
[SOURce[1]:]PM:STATe, 2h-64
[SOURce[1]:]POWer:ALC:PMETer, 2a-3
[SOURce[1]:]POWer:ALC:PMETer:STEP, 2a-5
[SOURce[1]:]POWer:ALC:SOURce, 2a-7
[SOURce[1]:]POWer:ATTenuation:AUTO, 2k-7
[SOURce[1]:]POWer[:LEVel], 2i-3
[SOURce[1]:]POWer[:LEVel]:STEP, 2i-6
[SOURce[1]:]POWer:PROTection:STATe, 2k-10
[SOURce[1]:]PULM:EXTernal:POLarity, 2h-66
[SOURce[1]:]PULM:SOURce, 2h-68
[SOURce[1]:]PULM:STATe, 2h-70
```

```
[SOURce[1]:]PULSe:DELay, 2h-72
[SOURce[1]:]PULSe:DELay:STEP, 2h-75
[SOURce[1]:]PULSe:DOUBLe[:STATE], 2h-77
[SOURce[1]:]PULSe:FREQuency, 2h-79
[SOURce[1]:]PULSe:FREQuency:STEP, 2h-82
[SOURce[1]:]PULSe:PERiod, 2h-84
[SOURce[1]:]PULSe:PERiod:STEP, 2h-87
[SOURce[1]:]PULSe:TRANsition
  TRAiling, 2h-95
[SOURce[1]:]PULSe:TRANsition[:LEADing], 2h-89
[SOURce[1]:]PULSe:TRANsition:STATe, 2h-92
[SOURce[1]:]PULSe:WIDTh, 2h-98
[SOURce[1]:]PULSe:WIDTh:STEP, 2h-101
[SOURce[1]:]ROSCillator:SOURce?, 2c-6
source settled bit, 8673, 4-17
space
  proper use of, 1-23
*SRE, 21-17
Standard Commands for Programmable Instruments. See SCPI
Standard Event Status Enable register, 21-11
Standard Event Status Enable register bit definitions, 21-11
Standard Event Status register, 21-13
Standard Event Status register bit definitions, 2l-13
standard notation, 1-17
status bits, 8673, 4-16
status byte, 21-49
Status Byte bit definitions, 21-49
STATus: OPERation: CONDition, 21-19
STATus: OPERation: ENABle, 21-21
STATus:OPERation[:EVENt]?, 21-24
STATus: OPERation: NTRansition, 21-27
STATus: OPERation: PTRansition, 21-30
STATus:PRESet, 21-33
STATus: QUEStionable: CONDition?, 21-35
STATus: QUEStionable: ENABle, 21-37
STATus:QUEStionable[:EVENt]?, 21-40
STATus: QUEStionable: NTRansition, 21-43
STATus: QUEStionable: PTRansition, 21-46
status register preset conditions, 21-33
status reporting, 21-13
*STB?, 21-49
string response data
  discussed in detail, 1-39
subsystem commands, 1-20
  defined, 1-21
  graphical tree format, 1-22
suppression of EOI, 1-13
syntax
  command, 2-2
```

```
syntax conventions, 2-2
    syntax diagrams
      commands, 1-31, 1-32
      message terminators, 1-30
      program message, 1-30
      response message, 1-33
    syntax drawings, 1-7
    system ALC mode, 8673, 4-13
    SYSTem:COMMunicate:GPIB:ADDRess, 2j-4
    SYSTem:COMMunicate:PMETer:ADDRess, 2e-25
    SYSTem: ERRor?, 2c-7
    SYSTem:KEY, 2g-5
    SYSTem:LANGuage, 2j-7
    SYSTem:PRESet, 2d-11
    SYSTem: VERSion?, 2c-9
T tab
      proper use of, 1-23
    talker, definition of, 1-5
    terminators
      program message, 1-18, 1-30
      program message:use in examples, 1-18
      response message, 1-18
    timebase reference, 2c-6
    TRIGger[:SEQuence[1]]:STARt]:SOURce,\ 2h\text{-}103
    TRIGger:SEQuence2
      SLOPe, 2h-105
    TRIGger:SEQuence2:STOP:SOURce, 2h-106
    *TST?, 2c-10
[] UNIT:FREQuency, 2j-9
    UNIT:POWer |: VOLTage, 2j-12
    UNIT:TIME, 2j-14
V version number
      SCPI, 2c-9
W *WAI, 2j-16
    whitespace
      proper use of, 1-23
```